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Abstract

In a work by Artstein-Avidan and Milman the concept of polarity is generalized
from the class of convex bodies to the larger class of convex functions. While
the only self-polar convex body is the Euclidean ball, it turns out that there
are numerous self-polar convex functions. In this work we give a complete
characterization of all rotationally invariant self-polar convex functions on Rn.
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1. Introduction

One of the most important concepts in convex geometry is that of polarity.
Denote by Kn0 the family of all closed, convex sets K ⊆ Rn such that 0 ∈ K. If
K ∈ Kn0 we define its polar (or dual) body as

K◦ = {x ∈ Rn : 〈x, y〉 ≤ 1 for every y ∈ K} ∈ Kn0 ,

where 〈·, ·〉 is the standard inner product on Rn. It is easy to see that polarity
is order reversing, which means that if K1 ⊆ K2 then K◦1 ⊇ K◦2 . Polarity is also
an involution - for every K ∈ Kn0 we have (K◦)

◦
= K. It turns out that these

two properties characterize polarity uniquely, as the next theorem shows:

Theorem. Let n ≥ 2 and T : Kn0 → Kn0 satisfy:

(i) T TK = K for all K.

(ii) If K1 ⊆ K2 then TK1 ⊇ TK2.

Then TK = B (K◦) where B ∈ GLn is a symmetric linear transformation.
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This theorem was proven by Artstein-Avidan and Milman in [3], but similar
theorems on different classes of convex bodies were proven earlier by Gruber in
[7] and by Böröczky and Schneider in [6].

When dealing with polarity, the Euclidean ball Dn ⊆ Rn often plays a special
role. The fundamental result here is that Dn is the only self-polar convex body:
D◦n = Dn, and a very simple proof shows that Dn is the only body with this
property.

One example of the importance of Dn when dealing with polarity is the famous
Blaschke-Santaló inequality. It states that if K is a symmetric convex body (i.e.
If K = −K), then

|K| · |K◦| ≤ |Dn| · |D◦n| = |Dn|2 .

Here |·| denotes the Lebesgue volume, and equality holds if and only if K is
a linear image of Dn. There exists a generalized version of the inequality for
non-symmetric bodies, but we will not need it here. The interested reader may
consult [8].

In recent years there was a surge of interesting results concerning generalizations
of various concepts from the realm of convex bodies to the realm of convex
(or, equivalently, log-concave) functions. Our main object of interest will be
Cvx0 (Rn), the class of all convex, lower semicontinuous functions ϕ : Rn →
[0,∞] satisfying ϕ(0) = 0. Notice that we have an order reversing embedding
of Kn0 into Cvx0 (Rn), sending K to

1∞K (x) =

{
0 x ∈ K
∞ otherwise.

A natural question is whether one can extend the concept of polarity from Kn0
to Cvx0 (Rn). The answer to this question is “yes”, as the following theorem by
Artstein-Avidan and Milman ([4]) shows:

Theorem. Let n ≥ 2 and T : Cvx0 (Rn)→ Cvx0 (Rn) satisfy:

(i) T T ϕ = ϕ for all ϕ.

(ii) If ϕ1 ≤ ϕ2 then T ϕ1 ≥ T ϕ2 (here and after, ϕ1 ≥ ϕ2 means ϕ1(x) ≥
ϕ2(x) for all x).

Then there exists a symmetric linear transformation B ∈ GLn and c > 0 such
that either:

(a) T ϕ = ϕ∗ ◦B, where ϕ∗ is the classic Legendre transform of ϕ, defined by

ϕ∗(x) = sup
y∈Rn

[〈x, y〉 − ϕ(y)]

or
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(b) T ϕ = (c · ϕ◦)◦B, where ϕ◦ is the new Polarity transform of ϕ, defined by

ϕ◦(x) =

{
sup{y∈Rn: ϕ(y)>0}

〈x,y〉−1
ϕ(y) x ∈

{
ϕ−1(0)

}◦
∞ x /∈

{
ϕ−1(0)

}◦
.

Even though we have two essentially different order reversing involutions, only
the polarity transform extends the classical notion of duality, in the sense that

(1∞K )
◦

= 1∞K◦ .

Therefore it makes sense to think about ϕ◦ as the polar function to ϕ.

Once we have extended the definition of polarity to convex functions, we want
to extend our theorems as well. A functional version of the Blaschke-Santaló in-
equality was proven by Ball in [5]: It follows from his work that if ϕ ∈ Cvx0 (Rn)
is an even function (i.e. ϕ(x) = ϕ (−x)), then

ˆ
Rn

e−ϕ(x)dx ·
ˆ
Rn

e−ϕ
∗(x)dx ≤

(ˆ
Rn

e−
|x|2
2 dx

)2

= (2π)
n
.

Again, there is a generalization for the non-even case, proven by Artstein-
Avidan, Klartag and Milman in [2]. In the same paper is it also shown that if ϕ
is a maximizer of the Santaló product, then, up to a linear transformation, we

must have ϕ = |x|2
2 . Since one can easily check that

(
|x|2
2

)∗
= |x|2

2 and |x|
2

2 is

the only function with this property, we get once again that the maximizer in
the Santaló inequality is the unique self-dual function.

Rather surprisingly, the above mentioned theorem seems to use the “wrong”
notion of polarity. It would be interesting have an analogous theorem for ϕ◦,
that is to find the maximizer ofˆ

Rn

e−ϕ(x)dx ·
ˆ
Rn

e−ϕ
◦(x)dx.

Given the classical and the functional Santaló inequalities, it makes sense to
conjecture that the maximizer here will be self-polar as well, that is ϕ = ϕ◦. An
independent argument by Artstein-Avidan ([1]) proves that the maximizer must
be rotationally invariant, i.e. of the form ϕ(x) = ρ(|x|) for a convex function
ρ : [0,∞) → [0,∞]. Therefore we are naturally led to the following question:
what are all the self-polar, rotationally invariant convex functions?

In order to answer this question we first follow [4] and observe that if ϕ(x) =
ρ (|x|) then ϕ◦(x) = ρ◦(|x|), where ρ◦ is the polarity transform of ρ on the ray
(see the next section for an exact definition). Therefore it is enough to find all
self-polar functions ϕ : [0,∞) → [0,∞]. An infinite family of such functions is
easy to present: For every 1 ≤ p ≤ ∞ the function

ϕp(x) =

√
(p− 1)

p−1

pp
· xp
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is self-polar. Our main result in this paper is that there are, in fact, many other
1-dimensional self-polar functions. Specifically, Theorem 5 provides a complete
characterization of self-polar functions on the ray.

Unfortunately, because the set of self-polar functions is so big, finding the San-
taló maximizer inside this set seems rather intractable at the moment, and the
original question we started with remains open. Nevertheless, we believe the
results presented here are of independent interest, and might have applications
in several directions.

2. Self-polar functions on the ray

Let Cvx0 (R+) be the class of all convex, lower semicontinuous functions ϕ :
[0,∞) → [0,∞] satisfying ϕ(0) = 0. For a function ϕ ∈ Cvx0 (R+), we define
its polar ϕ◦ as

ϕ◦(x) = sup
y>0

xy − 1

ϕ(y)
.

The division in the definition is formal, in the sense that ϕ(y) may be equal to
0. We remedy the situation by defining ”+

0 =∞” and ”−0 = 0”. Put differently,
we define ϕ◦(x) = ∞ whenever there exists a y ∈ R+ such that ϕ(y) = 0 and
xy − 1 > 0 (or, in other words, whenever x /∈

{
ϕ−1(0)

}◦
).

Just like in the n-dimensional case, polarity on the ray is also an order reversing
involution. Our main goal is to characterize all functions ϕ ∈ Cvx0 (R+) such
that ϕ = ϕ◦.

Definition 1. Denote by F the concave function F (x) =
√
x2 − 1 (defined for

x ≥ 1). For 1 ≤ q <∞, we define

Tq =

{
ϕ ∈ Cvx0

(
R+
)

:
ϕ(x) ≥ F (x) for all x ≥ 1
ϕ(q) = F (q)

}
.

In other words, Tq is the set of functions which are tangent to F at q. For q =∞
we define

T∞ =

{
ϕ ∈ Cvx0

(
R+
)

:
ϕ(x) ≥ F (x) for all x ≥ 1
limx→∞ (ϕ(x)− F (x)) = 0

}
.

The classes T1 and T∞ will be exceptional and somewhat trivial. In fact, let us
define the following:

Definition 2. For β ∈ R we define a function `β ∈ Cvx0 (R+) by `β(x) = βx.
In other words, `β is the line through the origin with slope β.
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Using this definition, it is not hard to see that T1 =
{

1∞[0,1]

}
, and T∞ = {`1}.

For 1 < q <∞, the class Tq is infinite.

Our first proposition will explain the importance of these classes when charac-
terizing self-polar functions:

Proposition 3.

(i) If ϕ ∈ Tq for some 1 ≤ q ≤ ∞, then ϕ◦ ∈ Tq.

(ii) If ϕ = ϕ◦, then ϕ ∈ Tq for some 1 ≤ q ≤ ∞.

Proof. (i) If q = 1,∞ this is trivial by the above comment. For 1 < q < ∞
define two convex functions ψL and ψU as

ψL = 1∞[0, 1q ] ∧ `F ′(q)
ψU = 1∞[0,q] ∨ `F (q)/q.

Here and after, ∨ and ∧ will denote supremum and infimum in the lattice
Cvx0 (R+). In other words, ϕ1 ∨ ϕ2 = max (ϕ1, ϕ2), and ϕ1 ∧ ϕ2 is the biggest
function in Cvx0 (R+) which is smaller than min (ϕ1, ϕ2). To illustrate these
definitions we plot the graphs of ψL and ψU :

F
ΨL

ΨU

1�q 1 q

FHqL

It is clear that ϕ ∈ Tq if and only if ψL ≤ ϕ ≤ ψU . Since polarity is order
reversing, we get that if ϕ ∈ Tq then ψ◦U ≤ ϕ◦ ≤ ψ◦L. But

ψ◦L =

(
1∞[0, 1q ]

)◦
∨
(
`F ′(q)

)◦
= 1∞[0,q] ∨ `1/F ′(q) = ψU ,

and thus ψ◦U = ψL , so ϕ◦ ∈ Tq as well.

(ii) First notice that if ϕ = ϕ◦ then for every x ≥ 0 we have

ϕ(x) = ϕ◦(x) = sup
y>0

xy − 1

ϕ(y)
≥ x2 − 1

ϕ(x)
,
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and if x ≥ 1 this implies ϕ(x) ≥ F (x).

Define convex sets in (R+)
2

by

C1 = epi(ϕ) =
{

(x, y) ∈
(
R+
)2

: y ≥ ϕ(x)
}

C2 = hyp(F ) =
{

(x, y) ∈
(
R+
)2

: y ≤ F (x)
}
.

If d (C1, C2) = 0 then ϕ ∈ Tq for some q (which can be ∞), so we will assume
by contradiction that d(C1, C2) > 0. This means that there is a line ` strictly
separating C1 and C2 (see, e.g. Theorem 11.4 in [9]). Denote by β the slope of
` and by a the intersection of ` and the x−axis. Define ψ = 1∞[0,a] ∧ `β :

F

j

Ψ

a 1

On the one hand, we know that

ψ ≤ ϕ = ϕ◦ ≤ ψ◦ = 1∞[0,a−1] ∨ `β−1 ,

so in particular ψ
(
1
a

)
≤ ψ◦

(
1
a

)
. More explicitly, this means

β

(
1

a
− a
)
≤ 1

β
· 1

a
,

or β2
(
1− a2

)
≤ 1.

On the other hand, it is easy to compute that the tangent to F passing through
(a, 0) has slope 1√

1−a2 . Since ψ > F we must have β > 1√
1−a2 , or β2(1−a2) > 1.

This is a contradiction, so no such ψ can exist and ϕ ∈ Tq for some 1 ≤ q ≤
∞.

Our next goal is to explain how to construct fixed points inside Tq for 1 < q <∞.
To do so we will need the following proposition, which shows that in order to
calculate ϕ◦(x) we don’t need to know ϕ(y) for all possible values of y:
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Proposition 4. Assume ϕ1, ϕ2 ∈ Tq for some 1 < q <∞.

(i) If ϕ1(x) = ϕ2(x) for all x ≤ q, then ϕ◦1(x) = ϕ◦2(x) for all x ≥ q.

(ii) If ϕ1(x) = ϕ2(x) for all x ≥ q, then ϕ◦1(x) = ϕ◦2(x) for all x ≤ q.

Proof. We will prove (i), and the proof of (ii) is analogous.

Define convex functions ψL and ψU by

ψU = ϕ ∨ 1∞[0,q]

ψL =
(
ϕ ∨ 1∞[0,q]

)
∧ `F ′(q),

where ϕ is either ϕ1 or ϕ2 – the definitions remain the same regardless of this
choice. We claim that ψL ≤ ϕi ≤ ψU for i = 1, 2. The right inequality is
obvious. For the left inequality, notice that ϕi and ψL coincide for x ≤ q. For
x ≥ q the function ψL grows linearly, and in fact is exactly the tangent line to
F at the point q. Since ϕi ∈ Tq we get that ψL is also a tangent for ϕi, and
because ϕi is convex we must have ϕi ≥ ψL:

F

ΨL

ji

1 q

FHqL

Since polarity is order reversing we get that ψ◦U ≤ ϕ◦i ≤ ψ◦L, so all we need to
show is that ψ◦U (x) = ψ◦L(x) for every x ≥ q. A direct computation yields

ψ◦U = ϕ◦1 ∧ 1∞[0,q−1]

ψ◦L =
(
ϕ◦1 ∧ 1∞[0,q−1]

)
∨ `F ′(q)−1,

so we need to show that if x ≥ q then

x

F ′(q)
≤
(
ϕ◦1 ∧ 1∞[0,q−1]

)
(x).

By Proposition 3 we know that ϕ◦1 ∈ Tq. In particular, the tangent line to F
at q is also a tangent line for ϕ◦1. But an easy computation shows that this line
passes through

(
q−1, 0

)
, so we know how ψ◦U looks:
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F

j1
ë

ΨU
ë

1�q 1 q

FHqL

In particular, wee see that if x ≥ q then(
ϕ◦1 ∧ 1∞[0,q−1]

)
(x) = ϕ◦1(x).

Finally, since ϕ◦1 is convex, we know that for every x ≥ q

ϕ◦1(x)

x
≥ ϕ◦1(q)

q
=
F (q)

q
=

1

F ′(q)
,

which implies
x

F ′(q)
≤ ϕ◦1(x)

like we wanted.

Using the last two propositions it is easy to give a complete characterization of
1-dimensional self-polar convex functions:

Theorem 5. For every ϕ ∈ Tq define

ϕ̃(x) =

{
ϕ(x) x ≤ q
ϕ◦(x) x ≥ q.

Then ϕ̃ is self-polar, and any self-polar function is of the form ϕ̃ for some ϕ.

Proof. Since both ϕ and ϕ◦ are tangent to F at q, the function ϕ̃ is indeed
convex. Using Proposition 4 twice we see that ϕ̃ is self-polar (compare once
with ϕ, and once with ϕ◦). In the other direction, if ϕ is self-polar then by
Proposition 3 we know that ϕ ∈ Tq for some q, and then ϕ = ϕ̃.

Finally, we would like to state that, rather surprisingly, there are self-polar
functions in Cvx0 (Rn) which are not rotationally invariant. As one example, it
is easy to compute directly that the function ϕ ∈ Cvx0

(
R2
)

defined by

ϕ(x, y) =

{
|y| if |x| ≤ 1

∞ otherwise
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is self-polar. This means that our classification of self-polar functions in Cvx0 (R+)
does not give a complete classification of all self-polar functions in Cvx0 (Rn).
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