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Our point of departure will be Minkowski’s theorem on mixed volumes:

Theorem 1 (Minkowski). Fix bodies K1,K2, . . . ,Km ∈ Knc . Then the function
F : (R+)

m → [0,∞), defined by

F (λ1, λ2, . . . , λm) = Vol (λ1K1 + λ2K2 + · · ·+ λmKm) ,

is a homogeneous polynomial of degree n, with non-negative coefficients.

Here Knc is the family of compact and convex bodies in Rn, and the addition
operation + is Minkowski addition,

A+B = {a+ b : a ∈ A, b ∈ B} .

By standard linear algebra, Minkowski’s theorem is equivalent to the existence
of a map V : (Knc )

n → [0,∞) which is multilinear, symmetric and which satisfies
V (K,K, . . . ,K) = Vol(K). This map is unique, and the number V (K1,K2, . . . ,Kn)
is known as the mixed volume of K1, . . . ,Kn.

Our goal is to extend Minkowski’s theorem to a functional setting. That is, we
want to take n functions f1, f2, . . . , fn : Rn → [0,∞) and define their “mixed vol-
ume” V (f1, f2, . . . , fn). In order to do so we need to choose an appropriate family
of functions, a “volume” functional on this family, and an addition operation.

For the family of functions, we choose the class of quasi-concave functions. A
function f : Rn → [0,∞) is called quasi-concave if for every x, y ∈ Rn and every
0 < λ < 1 we have

f (λx+ (1− λ)y) ≥ min {f(x), f(y)} .

While not always necessary, it is very convenient to assume further that f is upper
semicontinuous, that max f = f(0) = 1 and that f(x) → 0 as |x| → 0. Denote
this set of functions by QC (Rn).

As a volume, we choose the Lebesgue integral, i.e.

Vol(f) =

∫
Rn

f(x)dx.

Finally, for addition, we define a new addition on quasi-concave functions by

(f ⊕ g) (x) = sup
y∈Rn

min {f(y), g(x− y)} .

We further define the product λ� f for f ∈ QC (Rn) and λ > 0 by (λ� f) (x) =
f
(
x
λ

)
. We briefly comment that these operations emerge as a limit of the natural

addition operations on α-concave functions. An explanation of this statement
appears in [2] and [4].

Under the above definition, we have to following theorem:
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Theorem 2. Fix f1, f2, . . . , fm ∈ QC (Rn). Then the function F : (R+)
m →

[0,∞], defined by

F (λ1, λ2, . . . , λm) =

∫
[(λ1 � f1)⊕ (λ2 � f2)⊕ · · · ⊕ (λm � fm)]

is a homogeneous polynomial of degree n, with non-negative coefficients.

The proof of this result appears in [3]. As usual, this is equivalent to the
existence of a multilinear, symmetric map V : QC (Rn)

n → [0,∞] which satis-
fies V (f, f, . . . , f) =

∫
f . The number V (f1, f2, . . . , fm) will be called the mixed

integral of f1, f2, . . . , fm. The following theorem summarizes some of the basic
properties of mixed integrals:

Theorem 3. (1) V (K1,K2, . . . ,Kn) = V (1K1
,1K2

, . . . ,1Kn
).

(2) If fi ≥ gi for all i, then V (f1, f2, . . . , fn) ≥ V (g1, g2, . . . , gn).
(3) V is rotation and translation invariant.
(4) Fix gm+1, . . . , gn ∈ QC (Rn), and define

Φ(f) = V (f [m], gm+1, . . . , gn).

Φ satisfies a valuation type property: if f1, f2 ∈ QC (Rn) and f1 ∨ f2 =
max(f1, f2) ∈ QC (Rn) as well, then

Φ (f1 ∨ f2) + Φ (f1 ∧ f2) = Φ(f1) + Φ(f2).

Once we have a generalization of the notion of mixed volumes, it makes sense to
try and generalize the important inequalities as well. For example, for f ∈ QC (Rn)
define its k-th quermassintegral to be

Wk(f) = V (f, f, . . . , f︸ ︷︷ ︸
n−k times

,1D,1D, . . . ,1D︸ ︷︷ ︸
k times

),

whereD is the unit Euclidean ball. This notion of functional quermassintegrals was
discovered independently by Bobkov, Colesanti and Fragalà ([1]). In particular,
we have the notion of surface area, defined by S(f) = nW1(f).

We now want to prove a functional isoperimetric inequality. Unfortunately, it
turns out that for general quasi-concave functions it is impossible to give a lower
bound for S(f) in terms of

∫
f . Surprisingly, however, it is possible to state a

functional extension of the isoperimetric inequality:

Theorem 4. For every f ∈ QC (Rn) we have S(f) ≥ S(f∗), where f∗ is the
symmetric decreasing rearrangement of f .

Plugging in f = 1K , we see that this theorem really generalizes the isoperimetric
inequality.

Using a slightly more complicated notion of a “generalized rearrangement”, it
is possible to prove functional versions of most of the classic inequalities: Brunn-
Minkowski (and its extension to mixed volumes), Alexandrov-Fenchel, and others.
As a special case, we have the following extension of Theorem 4:

Theorem 5. For every f1, f2, . . . , fn ∈ QC (Rn) we have V (f1, f2, . . . , fn) ≥
V (f∗1 , f

∗
2 , . . . , f

∗
n).
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For indicator functions, this reduces to the known statement that for every
convex bodies K1,K2, . . . ,Kn in Rn we have

V (K1,K2, . . . ,Kn) ≥

(
n∏
i=1

Vol(Ki)

) 1
n

.

Finally, if one is willing to restrict the class of functions, it is possible to prove
certain inequalities in a more familiar form. For example, in the class of geometric
log-concave functions we have the following Alexandrov type inequalities:

Theorem 6. Define g(x) = e−|x|. For every geometric log-concave function f
and every integers 0 ≤ k < m < n we have(

Wk(f)

Wk(g)

) 1
n−k

≤
(
Wm(f)

Wm(g)

) 1
n−m

,

with equality if and only if f(x) = e−c|x| for some c > 0.
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eralized Prékopa-Leindler inequalities, preprint.

[2] V. Milman, L. Rotem, α-concave functions and a functional extension of mixed volumes,
Electronic Research Announcements in Mathematical Sciences 20 (2013), 1–11.

[3] V. Milman, L. Rotem, Mixed integrals and related inequalities, Journal of Functional Anal-

ysis 264(2), 570-604.
[4] L. Rotem, Support functions and mean width for α-concave functions, Advances in Mathe-

matics, to appear.

3


