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Our point of departure will be Minkowski’s theorem on mixed volumes:

Theorem 1 (Minkowski). Fiz bodies K1, Ko, ..., K, € K. Then the function
F: (RT)™ —[0,00), defined by

F(}\h)\g, R 7)\m) = Vol ()\1K1 + XKoo+ + )\me) s
is a homogeneous polynomial of degree n, with non-negative coefficients.

Here K7 is the family of compact and convex bodies in R", and the addition
operation + is Minkowski addition,

A+B={a+b: a€ A, be B}.

By standard linear algebra, Minkowski’s theorem is equivalent to the existence
of amap V : (K*)" — [0,00) which is multilinear, symmetric and which satisfies
V(K,K,...,K)=Vol(K). This map is unique, and the number V (K, Ks, ..., K,)
is known as the mixed volume of Ki,..., K,.

Our goal is to extend Minkowski’s theorem to a functional setting. That is, we
want to take n functions fi, fa, ..., fn : R™ — [0,00) and define their “mixed vol-
ume” V(f1, fa,..., fn). In order to do so we need to choose an appropriate family
of functions, a “volume” functional on this family, and an addition operation.

For the family of functions, we choose the class of quasi-concave functions. A
function f : R™ — [0, 00) is called quasi-concave if for every x,y € R™ and every
0 < A <1 we have

Sz + (1= A)y) = min{f(z), f(y)}.

While not always necessary, it is very convenient to assume further that f is upper
semicontinuous, that max f = f(0) = 1 and that f(z) — 0 as || — 0. Denote
this set of functions by QC (R™).

As a volume, we choose the Lebesgue integral, i.e.

Vol(f) = f(z)dz.

R

Finally, for addition, we define a new addition on quasi-concave functions by
(fog)(r)= sup min {f(y),g9(z —y)}.
yeR™

We further define the product A ® f for f € QC(R™) and A > 0 by (A® f) (x) =
f (%) We briefly comment that these operations emerge as a limit of the natural
addition operations on a-concave functions. An explanation of this statement
appears in [2] and [4].
Under the above definition, we have to following theorem:
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Theorem 2. Fiz fi, fo,..., fm € QC(R™). Then the function F : (RT)" —
[0, 00], defined by

F(/\17>\27-~-7)\m)Z/[()\1®f1)@()\2®f2)€9"'@()\m®fm)]

is a homogeneous polynomial of degree n, with non-negative coefficients.

The proof of this result appears in [3]. As usual, this is equivalent to the
existence of a multilinear, symmetric map V : QC (R™)" — [0,00] which satis-
fies V(f, f,...,f) = [ f. The number V(fi, fa,..., fm) will be called the mized
integral of f1, fa,..., fm. The following theorem summarizes some of the basic
properties of mixed integrals:

Theorem 3. (1) V(Ky1,Ka,y...,K,) =V(1k,, 1Kk, ..., 1K,).

(2) If fi > g;i for alli, then V(f1, fo,..., fn) =V (91,92, -, n)-
(3) V is rotation and translation invariant.

(4) Fiz gm+1,---,9n € QC(R™), and define
(I)(f) = V(f[m}’gm+17 s agn)
O satisfies a valuation type property: if f1, fa € QC(R™) and fi1 V fo =
max(f1, fo) € QC (R™) as well, then
D (fiV fa) + @ (f1 A f2) = ©(f1) + @(f2).

Once we have a generalization of the notion of mixed volumes, it makes sense to
try and generalize the important inequalities as well. For example, for f € QC (R™)
define its k-th quermassintegral to be

Wk(f) :V(f’f7"'7f71D71D7"'71D)7
——— —m—m—
n—k times k times

where D is the unit Euclidean ball. This notion of functional quermassintegrals was
discovered independently by Bobkov, Colesanti and Fragala ([1]). In particular,
we have the notion of surface area, defined by S(f) = nWy(f).

We now want to prove a functional isoperimetric inequality. Unfortunately, it
turns out that for general quasi-concave functions it is impossible to give a lower
bound for S(f) in terms of [ f. Surprisingly, however, it is possible to state a
functional extension of the isoperimetric inequality:

Theorem 4. For every f € QC(R™) we have S(f) > S(f*), where f* is the
symmetric decreasing rearrangement of f.

Plugging in f = 1k, we see that this theorem really generalizes the isoperimetric
inequality.

Using a slightly more complicated notion of a “generalized rearrangement”, it
is possible to prove functional versions of most of the classic inequalities: Brunn-
Minkowski (and its extension to mixed volumes), Alexandrov-Fenchel, and others.
As a special case, we have the following extension of Theorem 4:

Theorem 5. For every fi,fa,..., fn € QC(R™) we have V(f1, fo,..., fn) >
VTS5, fn)-
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For indicator functions, this reduces to the known statement that for every
convex bodies K1, K, ..., K, in R® we have

n

V(K Ky, ... Ky) > | [ Vol(K:)
i=1

Finally, if one is willing to restrict the class of functions, it is possible to prove
certain inequalities in a more familiar form. For example, in the class of geometric
log-concave functions we have the following Alexandrov type inequalities:

Theorem 6. Define g(z) = e~ 1*l. For every geometric log-concave function f
and every integers 0 < k < m < n we have

(FEO)™ < (el

with equality if and only if f(x) = e~°*l for some ¢ > 0.
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