# Mixed integrals and related inequalities <br> Liran Rotem <br> (joint work with Vitali Milman) 

Our point of departure will be Minkowski's theorem on mixed volumes:
Theorem 1 (Minkowski). Fix bodies $K_{1}, K_{2}, \ldots, K_{m} \in \mathcal{K}_{c}^{n}$. Then the function $F:\left(\mathbb{R}^{+}\right)^{m} \rightarrow[0, \infty)$, defined by

$$
F\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)=\operatorname{Vol}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{m} K_{m}\right),
$$

is a homogeneous polynomial of degree $n$, with non-negative coefficients.
Here $\mathcal{K}_{c}^{n}$ is the family of compact and convex bodies in $\mathbb{R}^{n}$, and the addition operation + is Minkowski addition,

$$
A+B=\{a+b: a \in A, b \in B\}
$$

By standard linear algebra, Minkowski's theorem is equivalent to the existence of a map $V:\left(\mathcal{K}_{c}^{n}\right)^{n} \rightarrow[0, \infty)$ which is multilinear, symmetric and which satisfies $V(K, K, \ldots, K)=\operatorname{Vol}(K)$. This map is unique, and the number $V\left(K_{1}, K_{2}, \ldots, K_{n}\right)$ is known as the mixed volume of $K_{1}, \ldots, K_{n}$.

Our goal is to extend Minkowski's theorem to a functional setting. That is, we want to take $n$ functions $f_{1}, f_{2}, \ldots, f_{n}: \mathbb{R}^{n} \rightarrow[0, \infty)$ and define their "mixed volume" $V\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. In order to do so we need to choose an appropriate family of functions, a "volume" functional on this family, and an addition operation.

For the family of functions, we choose the class of quasi-concave functions. A function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is called quasi-concave if for every $x, y \in \mathbb{R}^{n}$ and every $0<\lambda<1$ we have

$$
f(\lambda x+(1-\lambda) y) \geq \min \{f(x), f(y)\} .
$$

While not always necessary, it is very convenient to assume further that $f$ is upper semicontinuous, that $\max f=f(0)=1$ and that $f(x) \rightarrow 0$ as $|x| \rightarrow 0$. Denote this set of functions by $\mathrm{QC}\left(\mathbb{R}^{n}\right)$.

As a volume, we choose the Lebesgue integral, i.e.

$$
\operatorname{Vol}(f)=\int_{\mathbb{R}^{n}} f(x) d x
$$

Finally, for addition, we define a new addition on quasi-concave functions by

$$
(f \oplus g)(x)=\sup _{y \in \mathbb{R}^{n}} \min \{f(y), g(x-y)\} .
$$

We further define the product $\lambda \odot f$ for $f \in \mathrm{QC}\left(\mathbb{R}^{n}\right)$ and $\lambda>0$ by $(\lambda \odot f)(x)=$ $f\left(\frac{x}{\lambda}\right)$. We briefly comment that these operations emerge as a limit of the natural addition operations on $\alpha$-concave functions. An explanation of this statement appears in [2] and [4].

Under the above definition, we have to following theorem:

Theorem 2. Fix $f_{1}, f_{2}, \ldots, f_{m} \in \mathrm{QC}\left(\mathbb{R}^{n}\right)$. Then the function $F:\left(\mathbb{R}^{+}\right)^{m} \rightarrow$ $[0, \infty]$, defined by

$$
F\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)=\int\left[\left(\lambda_{1} \odot f_{1}\right) \oplus\left(\lambda_{2} \odot f_{2}\right) \oplus \cdots \oplus\left(\lambda_{m} \odot f_{m}\right)\right]
$$

is a homogeneous polynomial of degree $n$, with non-negative coefficients.
The proof of this result appears in [3]. As usual, this is equivalent to the existence of a multilinear, symmetric map $V: \mathrm{QC}\left(\mathbb{R}^{n}\right)^{n} \rightarrow[0, \infty]$ which satisfies $V(f, f, \ldots, f)=\int f$. The number $V\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ will be called the mixed integral of $f_{1}, f_{2}, \ldots, f_{m}$. The following theorem summarizes some of the basic properties of mixed integrals:
Theorem 3. (1) $V\left(K_{1}, K_{2}, \ldots, K_{n}\right)=V\left(\mathbf{1}_{K_{1}}, \mathbf{1}_{K_{2}}, \ldots, \mathbf{1}_{K_{n}}\right)$.
(2) If $f_{i} \geq g_{i}$ for all $i$, then $V\left(f_{1}, f_{2}, \ldots, f_{n}\right) \geq V\left(g_{1}, g_{2}, \ldots, g_{n}\right)$.
(3) $V$ is rotation and translation invariant.
(4) Fix $g_{m+1}, \ldots, g_{n} \in \mathrm{QC}\left(\mathbb{R}^{n}\right)$, and define

$$
\Phi(f)=V\left(f[m], g_{m+1}, \ldots, g_{n}\right)
$$

$\Phi$ satisfies a valuation type property: if $f_{1}, f_{2} \in \mathrm{QC}\left(\mathbb{R}^{n}\right)$ and $f_{1} \vee f_{2}=$ $\max \left(f_{1}, f_{2}\right) \in \mathrm{QC}\left(\mathbb{R}^{n}\right)$ as well, then

$$
\Phi\left(f_{1} \vee f_{2}\right)+\Phi\left(f_{1} \wedge f_{2}\right)=\Phi\left(f_{1}\right)+\Phi\left(f_{2}\right)
$$

Once we have a generalization of the notion of mixed volumes, it makes sense to try and generalize the important inequalities as well. For example, for $f \in \mathrm{QC}\left(\mathbb{R}^{n}\right)$ define its $k$-th quermassintegral to be

$$
W_{k}(f)=V(\underbrace{f, f, \ldots, f}_{n-k \text { times }}, \underbrace{\mathbf{1}_{D}, \mathbf{1}_{D}, \ldots, \mathbf{1}_{D}}_{k \text { times }})
$$

where $D$ is the unit Euclidean ball. This notion of functional quermassintegrals was discovered independently by Bobkov, Colesanti and Fragalà ([1]). In particular, we have the notion of surface area, defined by $S(f)=n W_{1}(f)$.

We now want to prove a functional isoperimetric inequality. Unfortunately, it turns out that for general quasi-concave functions it is impossible to give a lower bound for $S(f)$ in terms of $\int f$. Surprisingly, however, it is possible to state a functional extension of the isoperimetric inequality:
Theorem 4. For every $f \in \mathrm{QC}\left(\mathbb{R}^{n}\right)$ we have $S(f) \geq S\left(f^{*}\right)$, where $f^{*}$ is the symmetric decreasing rearrangement of $f$.

Plugging in $f=\mathbf{1}_{K}$, we see that this theorem really generalizes the isoperimetric inequality.

Using a slightly more complicated notion of a "generalized rearrangement", it is possible to prove functional versions of most of the classic inequalities: BrunnMinkowski (and its extension to mixed volumes), Alexandrov-Fenchel, and others. As a special case, we have the following extension of Theorem 4:
Theorem 5. For every $f_{1}, f_{2}, \ldots, f_{n} \in \mathrm{QC}\left(\mathbb{R}^{n}\right)$ we have $V\left(f_{1}, f_{2}, \ldots, f_{n}\right) \geq$ $V\left(f_{1}^{*}, f_{2}^{*}, \ldots, f_{n}^{*}\right)$.

For indicator functions, this reduces to the known statement that for every convex bodies $K_{1}, K_{2}, \ldots, K_{n}$ in $\mathbb{R}^{n}$ we have

$$
V\left(K_{1}, K_{2}, \ldots, K_{n}\right) \geq\left(\prod_{i=1}^{n} \operatorname{Vol}\left(K_{i}\right)\right)^{\frac{1}{n}}
$$

Finally, if one is willing to restrict the class of functions, it is possible to prove certain inequalities in a more familiar form. For example, in the class of geometric log-concave functions we have the following Alexandrov type inequalities:

Theorem 6. Define $g(x)=e^{-|x|}$. For every geometric log-concave function $f$ and every integers $0 \leq k<m<n$ we have

$$
\left(\frac{W_{k}(f)}{W_{k}(g)}\right)^{\frac{1}{n-k}} \leq\left(\frac{W_{m}(f)}{W_{m}(g)}\right)^{\frac{1}{n-m}}
$$

with equality if and only if $f(x)=e^{-c|x|}$ for some $c>0$.

## References

[1] S. Bobkov, A. Colesanti, I. Fragalà, Quermassintegrals of quasi-concave functions and generalized Prékopa-Leindler inequalities, preprint.
[2] V. Milman, L. Rotem, $\alpha$-concave functions and a functional extension of mixed volumes, Electronic Research Announcements in Mathematical Sciences 20 (2013), 1-11.
[3] V. Milman, L. Rotem, Mixed integrals and related inequalities, Journal of Functional Analysis 264(2), 570-604.
[4] L. Rotem, Support functions and mean width for $\alpha$-concave functions, Advances in Mathematics, to appear.

