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Abstract

In this note we discuss new constructions of convex bodies. By thinking of the polarity map K 7→ K◦

as the inversion x 7→ x−1 one may construct new bodies which were not previously considered in convex
geometry. We illustrate this philosophy by describing a recent result of Molchanov, who constructed
continued fractions of convex bodies.

Our main construction is the geometric mean of two convex bodies. We define it using the above
ideology, and discuss its properties and its structure. We also compare our new definition with the
“logarithmic mean” of Böröczky, Lutwak, Yang and Zhang, and discuss volume inequalities. Finally, we
discuss possible extensions of the theory to p-additions and to the functional case, and present a list of
open problems.

An appendix to this paper, written by Alexander Magazinov, presents a 2-dimensional counterexample
to a natural conjecture involving the geometric mean.

1 Introduction

A convex body in Rn is a compact, convex set K ⊆ Rn. We will always make the additional assumption
that 0 is in the interior of K, and denote the class of such convex bodies in Rn by Kn(0). We also denote the

(Lebesgue) volume of K by |K|, and the unit ball of `np by Bnp .

The goal of this paper is to discuss constructions of new convex bodies out of old ones. The most well-known
such construction is the Minkowski addition. For K,T ∈ Kn(0) we define

K + T = {x+ y : x ∈ K, y ∈ T} .

If λ > 0 and K ∈ Kn(0) then the homothety λK is defined in the obvious way as λK = {λx : x ∈ K}. Once
the addition and the homothety are defined, we may of course define the arithmetic mean of K and T as
A(K,T ) = 1

2 (K + T ).

Another standard construction in convex geometry is the polarity transform. The polar (or dual) of a body
K ∈ Kn(0) is defined by

K◦ = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ K} ,

where 〈·, ·〉 denotes the standard Euclidean inner product on Rn.

For an equivalent description of the polar body, remember that to every K ∈ Kn(0) one may associate two

standard functions hK , rK : Rn → (0,∞). The support function hK is defined by

hK(θ) = max
x∈K
〈x, θ〉 ,
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and the radial function rK is defined by

rK(θ) = max {λ > 0 : λθ ∈ K} .

As hK is 1-homogeneous and rK is (-1)-homogeneous, it is usually enough to think of them as functions on
Sn−1, the unit Euclidean sphere in Rn. We will often write hθ(K) and rθ(K) instead of hK(θ) and rK(θ),
especially in situations where θ ∈ Sn−1 is fixed and K changes. Each of the functions hK and rK determines
the body K uniquely, and the polar body K◦ can be defined by the relation rθ(K

◦) = hθ(K)−1. Remember
also that for every K,T ∈ Kn(0) and every λ > 0 we have hθ(λK + T ) = λhθ(K) + hθ(T ).

The polarity map ◦ : Kn(0) → K
n
(0) is an abstract duality in the sense of [3] (see also [22]). This means that it

satisfies the following two properties:

• It is an involution: (K◦)
◦

= K for all K ∈ Kn(0).

• It is order reversing : If K ⊇ T , then K◦ ⊆ T ◦.

In fact, the polarity map is essentially the only duality on Kn(0):

Theorem 1. Let T : Kn(0) → K
n
(0) be an order reversing involution. Then there exists a symmetric and

invertible linear map u : Rn → Rn such that TK = u (K◦).

This theorem essentially appears in the work of Böröczky and Schneider ([6]). A similar theorem on a
different class of convex sets was proved by Artstein-Avidan and Milman ([2]). On yet another class of
convex sets, the theorem can also be deduced from the work of Gruber ([13]).

There is another famous duality in mathematics: the inverse map. the map x 7→ x−1 defined on R+ is a
duality in the above sense. The same is true if one replaces R+ with the the class Mn

+ of n × n positive-
definite matrices. For the constructions described in this paper, it will be useful to think of K◦ as the inverse
“K−1”.

Let us give one example of this point of view. Once we have an inverse map and an addition operation, we
can easily construct the harmonic mean: The harmonic mean of K and T is simply

H(K,T ) =

(
K◦ + T ◦

2

)◦
.

Naturally, we expect the harmonic mean to be smaller then the arithmetic mean. This is true, and was
proved by Firey in [11]:

Theorem 2 (Firey). For every K,T ∈ Kn(0) one has

K + T

2
⊇
(
K◦ + T ◦

2

)◦
.

Since we will rely heavily on this result, we reproduce its short proof in a more modern notation:

Proof. Fix θ ∈ Sn−1. Since rθ(K) · θ ∈ K and rθ(T ) · θ ∈ T we have

rθ(K) + rθ(T )

2
· θ ∈ K + T

2
,

and hence by definition

rθ

(
K + T

2

)
≥ rθ(K) + rθ(T )

2
.
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On the other hand we have

rθ

((
K◦ + T ◦

2

)◦)
=

(
hθ

(
K◦ + T ◦

2

))−1
=

(
hθ (K◦) + hθ (T ◦)

2

)−1
=

2
1

rθ(K) + 1
rθ(T )

.

The result now follows from the arithmetic mean-harmonic mean inequality for real numbers.

The construction of the harmonic mean is not terribly exciting, but it emerged naturally from the same
philosophy as the rest of this paper. In the next section we will follow the work of Molchanov, and describe a
more interesting construction – continued fractions of convex bodies. The next several sections are devoted
to the geometric mean of convex bodies, the main construction of this paper. Section 8 is devoted to a
possible extension of the theory to the functional case. Finally, in Section 9 we list several open problems.

2 Continued fractions of convex bodies

For a sequence of positive real numbers {xm}∞m=1, the continued fraction [x1, x2, x3, . . .] is simply

1

x1 +
1

x2 + 1
x3+

1
···

.

More formally, we define [x1] = 1
x1

and

[x1, x2, . . . , xm] = (x1 + [x2, x3, . . . , xm])
−1
,

and we set
[x1, x2, x3, . . .] = lim

m→∞
[x1, x2, . . . , xm] .

It is not hard to see that this sequence indeed converges if xm > ε for all m and some fixed ε > 0. In
particular, the continued fraction converges whenever the xi’s are all integers.

In [18], Molchanov generalizes the construction of continued fractions to the general setting of a partially
ordered abelian semigroup equipped with an abstract duality (i.e. an order reversing involution). We will
only state his results for the class Kn(0), where the duality is of course the polarity transform.

For a sequence of convex bodies {Km}∞m=1 ⊆ Kn(0) we set [K1] = K◦1 and

[K1,K2, . . . ,Km] = (K1 + [K2,K3, . . . ,Km])
◦
.

In order to discuss the convergence of limm→∞ [K1,K2, . . . ,Km] we need a suitable metric on Kn(0). The
obvious choice, and the one used by Molchanov, is the Hausdorff distance:

d(K,T ) = min {r > 0 : K ⊆ T + rBn2 and T ⊆ K + rBn2 } .

We can now state Molchanov’s theorem:

Theorem 3 (Molchanov). Let {Km}∞m=1 ⊆ Kn(0) be a family of convex bodies. Assume that one of the
following three conditions hold:

1. Km ⊇ rBn2 for all m and for some r > 1.
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2. Bn2 ⊆ Km ⊆ R ·Bn2 for all m and for some R <∞.

3. rBn2 ⊆ Km ⊆ R ·Bn2 for all m for some such r < 1 and R ≤ r/(1− r).

Then
[K1,K2, . . .] = lim

m→∞
[K1,K2, . . . ,Km]

exists in the Hausdorff sense.

As a corollary of the above theorem, one can deduce the following result:

Proposition 4 (Molchanov). For every convex body K ∈ Kn(0) such that K ⊇ Bn2 there exists a unique body
Z ∈ Kn(0) such that Z◦ = Z +K.

Notice that if we think of Z◦ as the inverse “Z−1”, the equation Z◦ = Z + K is a “quadratic equation”
of convex bodies. Its solution can be written in a continued fraction form, Z = [K,K,K, . . .], and the
convergence of this fraction follows from Theorem 3. The uniqueness part of Proposition 4 does not appear
in Molchanov’s paper, but follows easily from his techniques.

We will now give a self-contained proof of Proposition 4. The proof is essentially Molchanov’s, but since we
do not strive for generality we can present the proof in a more transparent form. We begin with a lemma,
also taken from Molchanov’s paper:

Lemma 5 (Molchanov). If K,T ⊇ rBn2 then d(K◦, T ◦) ≤ r−2 · d(K,T ).

Proof. Write d = d(K,T ). By definition of the Hausdorff distance we have

K ⊆ T + d ·Bn2 ⊆ T +
d

r
T =

r + d

r
T,

and since polarity is order reversing it follows that

K◦ ⊇
(
r + d

r
T

)◦
=

r

r + d
T ◦.

Since K ⊇ rBn2 we also have Bn2 ⊇ rK◦, so

K◦ +
d

r2
Bn2 ⊇ K◦ +

d

r2
rK◦ =

(
r + d

r

)
K◦ ⊇ r + d

r
· r

r + d
· T ◦ = T ◦.

By exchanging the roles of K and T we also have T ◦ + d
r2B

n
2 ⊇ T ◦ , so d(K◦, L◦) ≤ d

r2 = r−2d(K,T ).

We may now proof Proposition 4:

Proof. Define a sequence of convex bodies by

Z1 = K◦

Zm+1 = (K + Zm)
◦
.

Our first goal is to prove that Zm ⊇ εBn2 for all m and some fixed ε > 0. Indeed, K is assumed to be compact
so Bn2 ⊆ K ⊆ R · Bn2 for some R > 0 . If we now define two sequences of real numbers {am}∞m=1, {bm}∞m=1

by

a1 =
1

R
b1 = 1

am+1 =
1

R+ bm
bm+1 =

1

1 + am
,
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it is trivial to prove by induction that amB
n
2 ⊆ Zm ⊆ bmBn2 for all m. Since

lim
m→∞

am = [R, 1, R, 1, R, 1, . . .] > 0,

it follows that am > ε for all m and some fixed ε > 0, which proves our claim.

Using the above fact and the lemma, we deduce that for every m > 1 we have

d(Zm+1, Zm) = d
(
(K + Zm)

◦
, (K + Zm−1)

◦) ≤ ( 1

1 + ε

)2

d (K + Zm,K + Zm−1)

=

(
1

1 + ε

)2

d(Zm, Zm−1).

Hence the sequence {Zm} is a Cauchy sequence, so the limit Z = limm→∞ Zm exists. In general the limit
of bodies in Kn(0) does not have to be in Kn(0), as it may have an empty interior. In our case, however, we

have Zm ⊇ εBn2 for all m, so Z ⊇ εBn2 and Z ∈ Kn(0). Sending m → ∞ in the relation Zm+1 = (K + Zm)
◦

and using the continuity of the polarity transform we obtain Z = (K + Z)
◦
, so the existence part of the

proposition is proved.

For the uniqueness, assume Z,W ∈ Kn(0) satisfy both Z◦ = Z +K and W ◦ = W +K. Fix some ε > 0 such
that Z,W ⊇ εBn2 . Then

d(Z,W ) = d ((Z +K)◦, (W +K)◦) ≤
(

1

1 + ε

)2

d (Z +K,W +K) =

(
1

1 + ε

)2

d(Z,W ),

so d(Z,W ) = 0 and Z = W .

Denote the unique solution of Z◦ = Z + K by Z(K). Notice that Z(rBn2 ) = [r, r, r, . . .] · Bn2 . In particular,

for r = 1 we have Z(Bn2 ) = 1
ϕB

n
2 , where ϕ = 1+

√
5

2 is the golden ratio. However, for other choices of K (say

the unit cube), the body Z(K) is completely mysterious, and we know very little about its properties. It
appears to be a genuinely new construction in convexity.

3 The geometric mean of convex bodies

Over the recent years, there were several attempts to define the geometric mean of two convex bodies K and
T . Let us recall some of these ideas, not in chronological order:

In [5], Böröczky, Lutwak, Yang and Zhang construct the following“0-mean”, or“logarithmic mean”, of convex
bodies:

Lλ(K,T ) =
{
x ∈ Rn : 〈x, θ〉 ≤ hK(θ)1−λhT (θ)λ for all θ ∈ Sn−1

}
.

In other words, the support function hL of L = Lλ(K,T ) is the largest convex function such that hL(θ) ≤
hK(θ)1−λhT (θ)λ for all θ ∈ Sn−1.

The authors of [5] conjecture that Lλ(K,T ) satisfy a Brunn-Minkowski type inequality. To describe their
conjecture, let us denote by Kns the class of origin-symmetric convex bodies, i.e. the sets K ∈ Kn(0) such that

K = −K. The log-Brunn-Minkowski conjecture then states that for every K,T ∈ Kns and every λ ∈ [0, 1] we

have |Lλ(K,T )| ≥ |K|1−λ |T |λ. It is still unknown whether this conjecture is true – it was proven in [5] in
dimension n = 2, and in [24] by Saroglou for unconditional convex bodies in Rn.

To explain its name, notice that the log-Brunn-Minkowski conjecture is a strengthening of the classic Brunn-
Minkowski inequality. Indeed, by the arithmetic mean-geometric mean inequality we have

hK(θ)1−λhT (θ)λ ≤ (1− λ)hK(θ) + λhT (θ) = h(1−λ)K+λT (θ),
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so the log-Brunn-Minkowski inequality implies that

|(1− λ)K + λT | ≥ |Lλ(K,T )| ≥ |K|1−λ |T |λ ,

which is exactly the Brunn-Minkowski inequality in its dimension free form.

Let us mention that one can also consider the “dual” construction to Lλ, where instead of the support
functions one take the geometric average of the radial functions. The body obtained is simply Lλ (K◦, T ◦)

◦
,

and Saroglou proved in [23] that |Lλ(K◦, T ◦)◦| ≤ |K|1−λ |T |λ for every K,T ∈ Kns . By the Blaschke-Santaló
inequality and Bourgain-Milman theorem ([7]), it follows that

|Lλ(K,T )| ≥ cn |K|1−λ |T |λ (3.1)

for some universal constant c > 0.

For complex bodies, the situation is much clearer. Notice that, by our definition, a convex body K ∈ Kns is
simply the unit ball of a norm on Rn. Similarly, a complex convex body K ⊆ Cn is the unit ball of a norm
on Cn. By identifying Cn ' R2n we see that every complex body is also a real body, but not vice versa. In
fact, a complex body K ⊆ Cn is a real body which is also symmetric with respect to complex rotations, i.e.
z ∈ K implies that eiθz ∈ K for all θ ∈ R.

There is a standard method in the literature to interpolate between complex norms, or equivalently, between
complex bodies. This method is known simply as “complex interpolation” and is described for example
in chapter 7 of [19]. In [8], Cordero-Erausquin proves that for every complex bodies K and T and every

λ ∈ [0, 1], we have the relation |Cλ(K,T )| ≥ |K|1−λ |T |λ where Cλ denotes the complex interpolation. From
here he deduces an extension of the Blaschke-Santaló inequality: Since

C1/2(K ∩ T,K◦ ∩ T ) ⊆ B2n
2 ∩ T

we must have |K ∩ T | |K◦ ∩ T | ≤
∣∣B2n

2 ∩ T
∣∣2. Cordero-Erausquin asks whether this inequality also holds for

real convex bodies, and this question is still open. A partial answer was given in [14] by Klartag, who proved
in the real case a functional version of the inequality. As a corollary he proved that for every K,T ∈ Kns we
have

|K ∩ T | |K◦ ∩ T | ≤ 2n |Bn2 ∩ T |
2

(3.2)

It is also true that for complex bodies Cλ(K,T ) ⊆ Lλ(K,T ), so the log-Brunn-Minkowski conjecture is true
for complex bodies (see [21]).

Finally, let us briefly mention a third possible “geometric mean”. The construction was studied by Cordero-
Erausquin and Klartag in [9], following a previous work of Semmes ([25]). Let u0, u1 : Rn → R be (sufficiently
smooth) convex functions. A p-interpolation between u0 and u1 is a function u : [0, 1]× Rn → R such that
u(0, x) = u0(x), u(1, x) = u1(x), and u(t, x) satisfies the PDE

∂2ttu =
1

p

〈
(Hessxu)

−1∇∂tu,∇∂tu
〉
.

Here we will care about the case p = 2. Given u0 and u1 it is not clear that this PDE has a solution, let alone
a unique solution. However, it is not hard to check that if u0 = 1

2h
2
K and u1 = 1

2h
2
L for some bodies K and

L, then ut = 1
2h

2
Rt

(assuming it exists) for some family of convex bodies Rt = Rt (K,L). Similarly to the

previous two constructions, the authors conjectured that |Rλ(K,L)| ≥ |K|1−λ |L|λ for K,T ∈ Kns . However,
after the publication of [9], Cordero-Erausquin and Klartag found a counterexample to this inequality.

We will now present a new definition for the geometric mean of two convex bodies in Rn, which seems to
satisfy some natural properties. As a first step, let us consider the geometric mean of positive numbers.
Given two numbers x, y > 0, we build two sequences by the recurrence relations

a0 = x h0 = y

an+1 =
an + hn

2
hn+1 =

(
a−1n + h−1n

2

)−1
.
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It is an easy exercise to see that {an} is decreasing, {hn} is increasing, and lim
n→∞

an = lim
n→∞

hn =
√
xy.

A similar result is known to hold for positive definite matrices. Given two such matrices u and v, we define

A0 = u H0 = v

An+1 =
An +Hn

2
Hn+1 =

(
A−1n +H−1n

2

)−1
.

It is known that {An} is decreasing (in the sense of matrices), {Hn} is increasing, and the limits lim
n→∞

An

and lim
n→∞

Hn exist and are equal. This joint limit is known as the geometric mean of u and v, and is often

written as u#v. It shares many of the properties of the geometric mean of numbers - see e.g. [15] for a
survey of such properties. An explicit formula for u#v is

u#v = u
1/2
(
u−

1/2vu−
1/2
)1/2

u
1/2,

but it may be better to think of u#v as the unique solution of the matrix equation xu−1x = v

Since we already understand the arithmetic mean and harmonic mean of convex bodies, we may simply
repeat the same process. For K,T ∈ Kn(0) we define

A0 = K H0 = T

An+1 =
An +Hn

2
Hn+1 =

(
A◦n +H◦n

2

)◦
.

(3.3)

Theorem 6. Fix K,T ∈ Kn(0) and define sequences {An} and {Hn} according to (3.3). Then {An} is

decreasing and {Hn} is increasing with respect to set inclusion, and the limits lim
n→∞

An and lim
n→∞

Hn exist

(in the Hausdorff sense) and are equal.

Proof. By Theorem 2 we see that An ⊇ Hn for every n ≥ 1. If follows that

An+1 =
An +Hn

2
⊆ An +An

2
= An,

and

Hn+1 =

(
A◦n +H◦n

2

)◦
⊇
(
H◦n +H◦n

2

)◦
= Hn.

Hence {An} is a decreasing sequence of convex bodies. It is also bounded from below by a “proper” convex
body (with non-empty interior), since

An ⊇ Hn ⊇ H1

for all n ≥ 1. It follows that there exists a body G1 ∈ Kn(0) such that An → G1 in the Hausdorff sense.

Similarly, {Hn} is increasing and bounded from above by A1, so it converges to some G2.

Finally, taking the equation

An+1 =
An +Hn

2

and sending n→∞, we see that G1 = 1
2 (G1 +G2). Hence G1 = G2 and the proof is complete.

Definition 7. The joint limit from the previous theorem is called the geometric mean of K and T :

G(K,T ) = lim
n→∞

An = lim
n→∞

Hn.

If we need to refer to the bodies An and Hn from the process defining G(K,T ), we will write An(K,T )
and Hn(K,T ). It is immediate that Hn(K,T ) ⊆ G(K,T ) ⊆ An(K,T ) for all n. In particular, we have the
arithmetic mean - geometric mean - harmonic mean inequality H1(K,T ) ⊆ G(K,T ) ⊆ A1(K,T ).
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Figure 1: K, T (dashed and dotted lines) and G(K,T ) (solid line)

Figure 1 depicts one planar example of two convex polygons K and T and their geometric mean.

Even though our motivation is very different, the above definition was also inspired by a similar construction
for 2-homogeneous functions of Asplund ([4]). We have also recently discovered a paper of Fedotov ([10])
with a similar construction.

4 Properties of the geometric mean

The following proposition summarizes some of the basic properties of the geometric mean:

Proposition 8. 1. G(K,K) = K.

2. G(K,T ) is monotone in its arguments: If K1 ⊆ K2 and T1 ⊆ T2 then G(K1, T1) ⊆ G(K2, T2).

3. [G(K,T )]
◦

= G (K◦, T ◦).

4. For any linear map u we have G(uK, uT ) = u (G(K,T )).

Proof. 1. This is obvious, as An(K,K) = Hn(K,K) = K for all n ≥ 0.

2. If K1 ⊆ K2 and T1 ⊆ T2 then easy induction of n shows that An(K1, T1) ⊆ An(K2, T2) and
Hn(K1, T1) ⊆ Hn(K2, T2) for all n ≥ 0. Sending n→∞ gives the result.

3. Again, use induction to show that [An(K,T )]
◦

= Hn(K◦, T ◦) and [Hn(K,T )]
◦

= An(K◦, T ◦) for all
n ≥ 0. Send n→∞ for the result.
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4. Using yet another induction, An(uK, uT ) = u (An(K,T )) and Hn(uK, uT ) = u (Hn(K,T )) for all
n ≥ 0. Again, we obtain the required result in the limit.

Let us mention another easy but important property of the geometric mean: All of our means (the arithmetic
mean, the harmonic mean and the geometric mean) do not depend on the choice of a scalar product on Rn.
This is obvious for the arithmetic mean, but less so for the harmonic and the geometric mean, since the
polarity map K 7→ K◦ which appears in the definition does depend on this choice. However, remember from
the proof of Theorem 2 that

rθ (H(K,T )) =
2

1
rθ(K) + 1

rθ(T )

for all θ ∈ Rn, so H(K,T ) may be constructed from K and T without mentioning polarity or any scalar
product. It follows that the harmonic mean, and hence also the geometric mean, may be defined without
fixing a scalar product on our space.

Our next goal is to compute the geometric mean in several important cases, which will give us a better
intuition for it.

Proposition 9. Let K be any convex body. Then:

1. G(K,K◦) = Bn2 .

2. For any positive definite linear map u we have G(K,uK◦) = u1/2Bn2 .

3. For any α, β > 0 we have G(αK, βK◦) =
√
αβBn2 .

Proof. For (1), notice that

G(K,K◦)◦ = G
(
K◦, (K◦)

◦)
= G(K◦,K) = G(K,K◦).

as the only body Kn(0) to satisfy X◦ = X is X = Bn2 , the claim follows.

Part (2) follows from (1), as

G(K,uK◦) = u
1/2G

(
u−

1/2K,u
1/2K◦

)
= u

1/2G
(
u−

1/2K,
(
u−

1/2K
)◦)

= u
1/2Bn2 .

Finally, for (3) we take u(x) = β
αx in (2) and obtain

G(αK, βK◦) = α ·G
(
K,

β

α
K◦
)

= α ·
√
β

α
Bn2 =

√
αβBn2 .

This proposition gives us another way to think about the geometric mean, as an extension of the notion of
polarity. We would like to say that T is polar to K with respect to Z if g(K,T ) = Z. The above proposition
says that K◦ is indeed polar to K with respect to the Euclidean ball. Several natural problems regarding
the theory of “polarity with respect to a convex body” will appear in the final section of this paper.

One may also compare this proposition with its obvious counterparts for numbers and matrices: G(x, x−1) =
1 for every x > 0 and G(u, u−1) = Id for every positive definite matrix u. We see that the ball Bn2 plays the
same role as the number 1 for positive numbers or the identity matrix for positive definite matrices. Hence
it makes sense to define

√
K = G(K,Bn2 ). For many of the open problems discussed in this paper one may

first concentrate on this special case.
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Proposition 10. Let u, v be positive-definite matrices, and let

E1 = {x : 〈ux, x〉 ≤ 1}
E2 = {x : 〈vx, x〉 ≤ 1}

be the corresponding ellipsoids. Then G(E1, E2) = {x : 〈wx, x〉 ≤ 1}, where w = u#v is the matrix geometric
mean of u and v.

Proof. We have E1 = u−1/2Bn2 , so E◦1 = u1/2Bn2 =
{
x :

〈
u−1x, x

〉
≤ 1
}

.

Since v = wu−1w, we see that

E2 =
{
x :

〈
wu−1wx, x

〉
≤ 1
}

=
{
x :

〈
u−1wx,wx

〉
≤ 1
}

= {x : wx ∈ E◦1 } = w−1E◦1 .

Hence by Proposition 9 we have

G(E1, E2) = G(E1, w−1E◦1 ) = w−
1/2Bn2 = {x : 〈wx, x〉 ≤ 1}

like we wanted.

The above result is somewhat surprising – For ellipsoids E1, E2 the intermediate setsAn (E1, E2) andHn (E1, E2)
are not ellipsoids. Still, in the limit we obtain that G (E1, E2) is an ellipsoid. Actually E1 and E2 are dual to
each other with respect to the ellipsoid G(E1, E2) (i.e. if the scalar product on Rn is chosen in such a way
that G(E1, E2) is the unit ball, then E2 = E◦1 ).

Proposition 10 has a nice corollary regarding the Banach-Mazur distance. For symmetric convex bodies
K,T ∈ Kns the Banach-Mazur distance dBM (K,T ) is defined by

dBM (K,T ) = min {λ > 0 : There exists a linear map u such that uT ⊆ K ⊆ λ · uT} .

We have the following result:

Proposition 11. For every K ∈ Kns one has dBM (
√
K,Bn2 ) ≤

√
dBM (K,Bn2 ).

Proof. Write d = dBM (K,Bn2 ). By definition, there exists an ellipsoid E such that E ⊆ K ⊆ d · E . By the
monotonicity of the geometric mean it follows that

√
E ⊆
√
K ⊆

√
d · E .

From Proposition 10 it follows that
√
E = G(E , Bn2 ) is an ellipsoid. Furthermore, the explicit formula given

there immediately implies that
√
d · E =

√
d ·
√
E . Hence we have

√
E ⊆
√
K ⊆

√
d ·
√
E so

dBM (
√
K,Bn2 ) ≤

√
d =

√
dBM (K,Bn2 ).

We know from John’s theorem that dBM (K,Bn2 ) ≤
√
n for all K ∈ Kns , so we always have dBM (

√
K,Bn2 ) ≤

n1/4. In particular, since it is known that dBM (Bnp , B
n
2 ) = n|1/2−1/p|, it follows that there is no K ∈ Kns such

that
√
K = Bnp if p > 4 or p < 4/3.

Finally, we conclude this section by computing an example in the plane that will be useful later:

10



Example 12. Fix R > 1 (that we will later send to ∞) and define

K = [−R,R]×
[
− 1

R
,

1

R

]
⊆ R2,

T =

[
− 1

R
,

1

R

]
× [−R,R] ⊆ R2.

Notice that K ⊇ T ◦, so G(K,T ) ⊇ G(T ◦, T ) = Bn2 . For the opposite inclusion, let us follow one iteration.
Define

A =
K + T

2
, B =

(
K◦ + T ◦

2

)◦
.

Obviously, A = 1
2

(
R+ 1

R

)
B2
∞. For B we use the following estimate:

hB◦(x, y) =
hK◦(x, y) + hT◦(x, y)

2
=

1

2

(
max

(
|x|
R
,R |y|

)
+ max

(
R |x| , |y|

R

))
≥ 1

2
((R |y|) + (R |x|)) =

R

2
(|x|+ |y|) .

Since |x|+ |y| = hB2
∞

(x, y), we have B◦ ⊇ R
2B

2
∞, so B ⊆ 2

RB
2
1 .

Hence

G(K,T ) = G (A,B) ⊆ G
(

1

2

(
R+

1

R

)
B2
∞,

2

R
B2

1

)
=

√
1 +

1

R2
B2

2 ,

where the last step follows from Proposition 9. It follows that limR→∞G(K,T ) = B2
2 .

5 Structure of the geometric mean

We now turn our attention to finer questions regarding the geometric mean. First we prove a relation between
G(A,B) and the logarithmic mean L1/2(A,B) described in Section 3:

Proposition 13. For K,T ∈ Kn(0) we have G(K,T ) ⊆ L1/2(K,T ).

Proof. Define ϕn = h (An (K,T )), and ψn = h (Hn (K,T )), where h denotes the support function. We will
also define another process by

ϕ̃0 = h(K) ψ̃0 = h(T )

ϕ̃n+1 =
1

2

(
ϕ̃n + ψ̃n

)
ψ̃n+1 =

[
1

2

(
ϕ̃−1n + ψ̃−1n

)]−1
.

Notice that the functions ϕ̃n, ψ̃n are not necessarily convex, unlike ϕn and ψn. Still, we claim that ϕ̃n ≥ ϕn
and ψ̃n ≥ ψn for all n (here and everywhere else in the proof, inequalities between functions are meant in
the pointwise sense). For n = 0 there is nothing to prove. If we assume the inequalities to be true for n,
then for n+ 1 we hav

ϕn+1 = h (An+1) = h

(
An +Hn

2

)
=
h (An) + h (Hn)

2
=
ϕn + ψn

2

≤ ϕ̃n + ψ̃n
2

= ϕ̃n+1.

11



We also have

ψn+1 = h (Hn+1) = r

(
A◦n +H◦n

2

)−1 (∗)
≤
(
r (A◦n) + r(H◦n)

2

)−1
=

=
2

h(An)−1 + h(Bn)−1
=

2

ϕ−1n + ψ−1n
≤ 2

ϕ̃−1n + ψ̃−1n
= ψ̃n+1,

where (∗) was explained in the proof of Theorem 2. This completes the inductive proof.

It is a simple exercise in calculus that

lim
n→∞

ϕ̃n = lim
n→∞

ψ̃n =
√
h(K)h(T ).

Therefore, by taking the limit n→∞ in the inequality ϕ̃n ≥ ϕn we see that

h (G(K,T )) = lim
n→∞

ϕn ≤ lim
n→∞

ϕ̃n =
√
h(K)h(T ).

This proves the result.

For the “dual” logarithmic sum, we obtain an inclusion in the opposite direction:

Corollary 14. For K,T ⊆ Kn(0) and we have G(K,T ) ⊇ L1/2(K
◦, T ◦)◦.

Proof. Applying Proposition 13 to K◦ and T ◦ we see that

G (K,T )
◦

= G (K◦, T ◦) ⊆ L1/2 (K◦, T ◦) .

Taking polarity, we obtain the result.

The inclusions in the last two results may be strict. For example, take K = B2
∞ ⊆ R2 and T = B2

1 ⊆ R2.
Then G(K,T ) = B2

2 since T = K◦. However, a direct (yet tedious) computation shows that L1/2(K,T ) and
L1/2 (K◦, T ◦)

◦
are octagons. Figure 2 depicts the three bodies G(K,T ), L1/2(K,T ) and L1/2 (K◦, T ◦)

◦
.

In the figure we see that even though those three bodies are distinct, there are directions in which their
radial functions coincide. This is not a coincidence, as the next proposition shows:

Proposition 15. Let K and T be convex bodies. Assume that in direction η the bodies K and T have
parallel supporting hyperplanes, with normal vector θ. Write G = G(K,T ). Then hG(θ) =

√
hK(θ)hT (θ)

and rG(η) =
√
rK(η)rT (η).

Proof. Write a = rK(η)η ∈ ∂K and b = rT (η)η ∈ ∂T . Since the hyperplane {x : 〈x, θ〉 = 〈a, θ〉} is a
supporting hyperplane for K we know that

hK(θ) = 〈a, θ〉 = rK(η) · 〈η, θ〉 ,

and similarly hT (θ) = rT (η) · 〈η, θ〉.

On the one hand, by Proposition 13 we know that hG(θ) ≤
√
hK(θ)hT (θ). On the other hand,

hG(θ) = sup
α∈Sn−1

(〈α, θ〉 · rG(α)) ≥ 〈η, θ〉 · rG(η)

≥ 〈η, θ〉 ·
√
rK(η)rT (η) =

√
hK(θ)hT (θ),

12



Figure 2: G(K,T ) (solid line), L1/2(K,T ) (dotted line), L1/2 (K◦, T ◦)
◦

(dashed line)

where we used Corollary 14. Together we see that indeed hG(θ) =
√
hK(θ)hT (θ). Hence we must also have

hG(θ) = 〈η, θ〉 · rG(η), so

rG(η) =
hG(θ)

〈η, θ〉
=

√
hK(θ)

〈η, θ〉
· hT (θ)

〈η, θ〉
=
√
rK(η) · rT (η).

Remember that if K is not smooth at a point, it may have many supporting hyperplanes at this point.
The above proposition only requires that one supporting hyperplane of K in direction η is parallel to one
supporting hyperplane of T in the same direction. Such directions η always exist, for any pair of convex

bodies K and T . For example, if one defines a functional Φ : Sn−1 → R by Φ(η) = rK(η)
rT (η)

, then it is enough

to take the points where Φ attains its extrema.

Let us understand the relation between G(K,T ) and L1/2(K,T ) in different terms. Formally we have only
defined the mean G(K,T ) for compact sets. However, there is a natural extension of this notion to slabs:
we will write Sθ,c = {x : |〈x, θ〉| ≤ c}, and set

G (Sθ,c, Sη,d) =

{
Sθ,
√
cd if θ = η

Rn otherwise.

One way to justify this formula is to think about a slab as a degenerated ellipsoid and take a suitable limit
in Proposition 10.

13



From this definition it is immediate that

L1/2 (K,T ) =
⋂
{G(Sθ,c, Sη,d) : K ⊆ Sθ,c and T ⊆ Sη,d} .

However, what happens if we allow arbitrary ellipsoids, and not only slabs?

Definition 16. Given convex bodies K,T ⊆ Rn, we define the upper ellipsoidal envelope of K and T to be

G(K,T ) =
⋂
{G(E1, E2) : K ⊆ E1 and T ⊆ E2} ,

Similarly we define the lower ellipsoidal envelope of K and T as

G(K,T ) = G(K◦, T ◦)◦ = conv
⋃
{G(E1, E2) : K ⊇ E1 and T ⊇ E2} .

We obviously have G(K,T ) ⊆ G(K,T ) ⊆ G(K,T ). It will be interesting to know when is it true that
G(K,T ) = G(K,T ) = G(K,T ).

To see why this may be interesting, remember that in Example 10 we proved an explicit formula for the
geometric mean of ellipsoids. From this formula it is clear that

G(αE1, βE2) =
√
αβG(E1, E2)

for all ellipsoids E1, E2 and all α, β > 0. Hence we also have

G(αK, βT ) =
√
αβ ·G(K,T ),

and similarly for the lower envelope G. It seems intuitive that this scaling property should hold for G as
well, and it is obviously true whenever G coincide with one of its envelopes. However, recently Alexander
Magazinov found a counterexample to this “scaling conjecture”. In particular, his example shows that in
general G does not have to coincide with its ellipsoidal envelopes. Magazinov’s example appears as an
appendix to this paper.

Another possible application of the equality G(K,T ) = G(K,T ) (whenever it is true) will be given in Section
(7), where we discuss a possible extension of the iteration process 3.3 to p-sums.

6 Volume inequalities

Like in the case of the logarithmic mean or the complex interpolation, it is natural to ask whether we have
an inequality of the form

|G(K,T )| ≥
√
|K| |T |

for K,T ∈ Kns . Such an inequality will be intimately related to the Brunn-Minkowski and log-Brunn-
Minkowski inequalities (remember the discussion in Section 3 and Proposition 13), as well as the Blaschke-
Santaló inequality (take T = K◦ and remember Proposition 9).

Unfortunately, we have already seen in Example 12 that this inequality is false in general. In that example
we had |K| = |T | = 4 for all values of R, but

lim
R→∞

|G(K,T )| =
∣∣B2

2

∣∣ = π < 4.

Still, it seems worthwhile to understand for what classes of bodies this inequality is true, and how far it is
from being true in general. For example, the following is an immediate computation:
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Proposition 17. If E1 and E2 are ellipsoids then |G(E1, E2)| =
√
|E1| |E2|.

Proof. Using the computations and notation of Example 10 we have

|G(E1, E2)| =
∣∣∣w−1/2Bn2

∣∣∣ = (detw)
−1/2 |Bn2 | = det (u#v)

−1/2 |Bn2 |

= (detu · det v)
−1/4 |Bn2 | =

√[
(detu)

−1/2 |Bn2 |
] [

(det v)
−1/2 |Bn2 |

]
=

√∣∣u−1/2Bn2
∣∣ · ∣∣v−1/2Bn2

∣∣ =
√
|E1| |E2|.

Corollary 18. The log-Brunn-Minkowski conjecture is true for ellipsoids.

Proof. Combine the above Proposition with Proposition 13.

In general, let us define the constant gn to be the biggest constant such that

|G(K,T )| ≥ gn ·
√
|K| |T |.

for all K,T ∈ Kns . Determining the asymptotics of gn as n → ∞ may have important consequences. For
example, by Proposition 13 we see that ∣∣L1/2(K,T )

∣∣ ≥ gn√|K| |T |,
so this question is directly related to the log-Brunn-Minkowski conjecture. As another example, by mono-
tonicity and Proposition 9 we have G (K ∩ T,K◦ ∩ T ) ⊆ Bn2 ∩ T , so |K ∩ T | · |K◦ ∩ T | ≤ g−2n · |Bn2 ∩ T |

2
.

From proposition 17 and John’s theorem one obtains the trivial bound gn ≥ n−n/2. It seems possible that
gn ≥ cn for some constant c. Such a result will essentially recover Klartag’s result (3.2), perhaps with
a different constant. It will also give a new proof of the inequality (3.1) which follows from the work of
Saroglou.

7 p-additions and p-geometric means

In the introduction to this paper we took time to explain the role of the polarity map, but we took for
granted the fact that the “addition” of convex bodies is indeed the Minkowski sum. However, there are other
interesting additions on convex sets, such as the p-additions. This notion was introduced by Firey ([12]) and
studied extensively by Lutwak ([16], [17]). For K,T ∈ Kn(0) and 1 ≤ p < ∞, the p-sum K +p T is defined
implicitly by the relation

hθ(K +p T ) = (hθ(K)p + hθ(T )p)
1/p
.

The case p = 1 is of course the standard Minkowski addition.

Instead of the process (3.3), one may fix 1 ≤ p <∞ and look at the following process:

A0 = K H0 = T

An+1 =
An +p Hn

21/p
Hn+1 =

(
A◦n +p H

◦
n

21/p

)◦
.

(7.1)

(the factor 21/p is the correct one, since K +p K = 21/pK ).
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Theorem 19. Fix K,T ∈ Kn(0) and 1 ≤ p < ∞, and define processes {An}, {Hn} by (7.1). Then {An} is

decreasing, {Hn} is increasing, and the limits lim
n→∞

An and lim
n→∞

Hn exist (in the Hausdorff sense) and are

equal.

The proof is almost identical to the proof of Theorem 6, so we omit the details. We call this joint limit the
p-geometric mean of K and T and denote it by Gp(K,T ).

As a side note, one may also discuss the ∞-sum of convex bodies which is the limit of p-sums as p → ∞.
Explicitly

hθ(K +∞ T ) = lim
p→∞

(hθ(K)p + hθ(T )p)
1/p

= max {hθ(K), hθ(T )} ,

so K +∞ T = K ∨ T , the convex hull of the union K ∪ T . For p =∞ the process (7.1) becomes

A0 = K H0 = T
An+1 = An ∨Hn Hn+1 = An ∩Hn,

(7.2)

but this process does not converge unless K = T . Indeed, for every n ≥ 1 we have An = K ∨ T and
Hn = K ∩ T . Hence we will only discuss 1 ≤ p <∞.

All the results of this paper remain true when G(K,T ) is replaced by Gp(K,T ), with almost identical proofs.
In particular Gp(K,K

◦) = Bn2 = G(K,K◦) for all K ∈ Kns , and Gp(E1, E2) = G(E1, E2). In fact, we have
computed a few examples using a computer and did not find an example where Gp(K,T ) 6= Gq(K,T ). Is it
possible that Gp(K,T ) does not depend on p, at least on some non-trivial cases?

In this direction it is worth mentioning that since for ellipsoids Gp(E1, E2) does not depend on p, the ellipsoidal
envelopes G(K,T ) and G(K,T ) from Definition 16 also do not depend on p. In particular, we have G(K,T ) ⊆
Gp(K,T ) ⊆ G(K,T ) for all 1 ≤ p < ∞. From here we see that if for some bodies K,T ∈ Kns we have
G(K,T ) = G(K,T ), then Gp(K,T ) is indeed independent of p. As discussed in Section 5, we do not know
when this is the case.

8 Functional constructions

So far we only discussed constructions of new convex bodies out of old ones. However, similar constructions
can be used for convex functions as well. We denote by Cvx (Rn) the class of all convex and lower semi-
continuous functions ϕ : Rn → (−∞,∞]. The addition on Cvx (Rn) is the regular pointwise addition, and
the order is the pointwise order (ϕ ≤ ψ if ϕ(x) ≤ ψ(x) for all x). Like Kn(0), the class Cvx (Rn) also has an
essentially unique duality, the Legendre transform

ϕ∗(y) = sup
x∈Rn

[〈x, y〉 − ϕ(x)] .

More formally, we have the following theorem of Artstein-Avidan and Milman ([1], [3]):

Theorem 20. Every order reversing involution T : Cvx (Rn) → Cvx (Rn) is the Legendre transform up to
linear terms.

Explicitly, there exists a constant C ∈ R, a vector v ∈ Rn, and an invertible symmetric linear transformation
B ∈ GL(n) such that

(T ϕ) (x) = ϕ∗ (Bx+ v) + 〈x, v〉+ C.

Hence we may think of ϕ∗ as the inverse “ϕ−1” and attempt to repeat the constructions of the previous sec-
tions. Notice that for functions the harmonic mean H(ϕ,ψ) =

[
1
2 (ϕ∗ + ψ∗)

]∗
is exactly the inf-convolution,

used by Asplund in [4]:

(H(ϕ,ψ)) (x) =
1

2
inf
y∈Rn

(ϕ(x+ y) + ψ(x− y)) .
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As a recent example of the benefits of thinking of ϕ∗ as ϕ−1, Rotem recently proved the following result
([20]):

Theorem 21. For every ϕ ∈ Cvx (Rn) one has

(ϕ+ δ)
∗

+ (ϕ∗ + δ)
∗

= δ,

where δ(x) = 1
2 |x|

2
and |·| is the Euclidean norm on Rn.

Notice that this theorem is the analogue for convex functions of the trivial identity 1
x+1 + 1

1/x+1 = 1 for

positive real numbers. The function δ plays the role of the number 1 as δ is the unique function satisfying
δ∗ = δ. This theorem has applications for functional Blaschke-Santaló type inequalities and for the theory
of summands.

By fixing a convex body K ∈ Kn(0) and choosing ϕ = 1
2h

2
K in Theorem 21, it was shown in [20] that

(K +2 B
n
2 )
◦

+2 (K◦ +2 B
n
2 )
◦

= Bn2

where the 2-sum +2 was defined in the previous section. However, it turns out that the 2-sum cannot be
replaced by the Minkowski sum, as the identity

(K +Bn2 )
◦

+ (K◦ +Bn2 )
◦

= Bn2

is simply false. So in this example not only the theory can be extended to the functional case, but the
functional case is better behaved than the classical case of convex bodies.

The theory of continued fractions can also be extended to this functional case. Specifically, Molchanov proves
the following theorem in [18]:

Theorem 22. Let ϕ ∈ Cvx (Rn) be a non-negative function with ϕ(0) = 0. Assume that r
2 |x|

2 ≤ ϕ(x) ≤
R
2 |x|

2
for all x ∈ Rn, for some constants r,R that satisfy r2 + 4 rR > 4. Then the continued fraction

[ϕ,ϕ, ϕ, . . .] converges to a function ζ ∈ Cvx (Rn), and ζ solves the functional equation ζ∗ = ζ + ϕ.

The convergence of [ϕ,ϕ, ϕ, . . .] is proved with respect to the metric

d(ϕ,ψ) = min {r > 0 : f ≤ g + rδ and g ≤ f + rδ} .

We will not give the details of the proof.

Finally, the construction of the geometric mean may also be carried out for convex functions. Given ϕ,ψ ∈
Cvx (Rn) we define

α0 = ϕ η0 = ψ

αn+1 =
αn + ηn

2
ηn+1 =

(
α∗n + η∗n

2

)∗
.

It is then possible to prove the following result:

Theorem 23. Assume ϕ,ψ ∈ Cvx (Rn) are everywhere finite. Then the pointwise limit

ρ = lim
n→∞

αn = lim
n→∞

βn

exists. We call ρ the geometric mean of ϕ and ψ and write ρ = G(ϕ,ψ). Furthermore, the functional
geometric mean has the following properties:

1. G(ϕ,ϕ) = ϕ.
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2. G(ϕ,ψ) is monotone in its arguments: If ϕ1 ⊆ ϕ2 and ψ1 ⊆ ψ2 then G(ϕ1, ψ1) ⊆ G(ϕ2, ψ2).

3. [G(ϕ,ψ)]
∗

= G (ϕ∗, ψ∗).

4. G(ϕ,ϕ∗) = δ.

5. For any linear map u we have G(ϕ ◦ u, ψ ◦ u) = G(ϕ,ψ) ◦ u.

We omit the details of the proof, as it is very similar to Theorem 6, Proposition 8 and Proposition 9.

Finally, let us note that in some ways the geometric mean of convex functions is even more well behaved
than the geometric mean of convex bodies. For example, the following theorem is proved in [20]:

Theorem 24. The geometric mean of convex functions is concave in its arguments. More explicitly, fix
ϕ0, ϕ1, ψ0, ψ1 ∈ Cvx (Rn) and 0 < λ < 1. Define ϕλ = (1− λ)ϕ0 + λϕ1 and ψλ = (1− λ)ψ0 + λψ1. Then

G (ϕλ, ψλ) ⊇ (1− λ) ·G (ϕ0, ψ0) + λG(ϕ1, ψ1)

whenever all the geometric means in this expression are well defined.

This theorem is the natural extension of the fact that f(x, y) =
√
xy is a concave function on (R+)

2
. Like

in Theorem 21, the functional version immediately implies a theorem for convex bodies with the 2-sum: For
every convex bodies K0,K1, T0, T1 ∈ Kn(0) one has

G2 (Kλ, Tλ) ⊇
√

1− λG2(K0, T0) +2

√
λG2(K1, T1),

where Kλ =
√

1− λK0 +2

√
λK1 and Tλ =

√
1− λT0 +2

√
λT1.

However, it is also proved in [20] that the concavity property does not hold for the geometric mean of convex
bodies with the regular Minkowski addition. So, like in Theorem 21, the functional theory is better behaved
than the classical theory.

9 Open problems

We conclude this paper by clearly listing the open problems that were mentioned in the previous sections,
together with a few other.

1. As explained in Section 4, we would like to think of the relation G(K,T ) = Z as “T is polar to K with
respect to Z”. This ideology raises the following questions:

(a) Domain of polarity: Fix Z ∈ Kn(0). For which convex bodies K there exists a T such that

G(K,T ) = Z? In other words, what is the natural domain of this “extended polarity”?

As a particular sub-problem, assume that for every K ∈ Kn(0) there exists a T ∈ Kn(0) such that

G(K,T ) = Z. Does it follow that Z is an ellipsoid?

(b) Uniqueness: Is the polar body to K with respect to Z always unique? More explicitly, if
K,T1, T2 ∈ Kn(0) satisfy G(K,T1) = G(K,T2), does it follow that T1 = T2?

(c) Order reversing: Assume that G(K1, T1) = G(K2, T2) and K1 ⊇ K2. Does it follow that
T1 ⊆ T2? In other words, is the “extended polarity” transform order reversing? Notice that an
affirmative answer to this question implies an affirmative answer to the previous question. It is
also worth mentioning that G(K,T1) ⊇ G(K,T2) does not imply that T1 ⊇ T2, and one can even
construct a counterexample where K,T1, T2 are ellipsoids.
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2. For which bodies K,T ∈ Kns we have G(K,T ) = G(K,T )?

Remember from the discussion in Sections 5 and 7 that this question is related to the next two. Also
remember that by Magazinov’s example in the appendix, the answer to this question is not “always”.

3. Fix K,T ∈ Kn(0) and α, β > 0. When is it true that G(αK, βT ) =
√
αβG(K,T )?

Since this equality holds when α = β, it is enough to assume that β = 1 or that α = 1
β . Again, the

answer to this question is not “always”.

4. Fix K,T ∈ Kn(0). When is Gp(K,T ) as defined in Section 7 independent on p ∈ [1,∞)?

5. As discussed in Section 6, what is the asymptotic behavior of

gn = inf
K,T∈Kns

|G(K,T )|√
|K| |T |

as n→∞?

6. Does there exists an “exponential map”E : Kn(0) → K
n
(0) such that

E

(
K + T

2

)
= G (E(K), E(T ))?

What should be the image I ⊆ Kn(0) of E? Since exp ([0,∞)) = [1,∞), it may be possible to take

I =
{
K ∈ Kn(0) : K ⊇ Bn2

}
.

It may be easier to construct the “logarithm” L : I → Kn(0) with the property

G(L(K), L(T )) =
L(K) + L(T )

2
.

7. How to properly define the weighted geometric mean of two convex bodies?

For numbers x, y > 0 and λ ∈ [0, 1], the λ-geometric mean of x and y is simply x1−λyλ. For positive-
definite matrices, the λ-geometric mean of u and v is usually defined as

u#λv = u
1/2
(
u−

1/2vu−
1/2
)λ
u

1/2.

What should the definition be for convex bodies? It is possible to define for example G1/4 (K,T ) =
G (G(K,T ), T ) and so on, but is there a more direct approach?
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Appendix: A counterexample to the scaling property of the

geometric mean

Alexander Magazinov

Theorem A. Let K be a square with vertices (±4, 0) and (0,±4). Let T be a hexagon with vertices (0,±4),
(±2,±1) (the signs in the last expression are taken independently). Then

G(K,T ) 6= G

(
(1 + ε)K,

1

1 + ε
T

)
,

if ε 6= 0 and |ε| is small enough.

The following lemma is the key to Theorem A. By a non-reflex angle in R2 we mean a closed convex cone
C ⊆ R2 with vertex at (0, 0) which has a non-empty interior, but that does not contain a full line. The
notation [u1, u2] for u1, u2 ∈ R2 denotes the closed interval with endpoints u1 and u2:

Lemma B. Let C ⊆ R2 be a non-relfex angle. Fix K,T ∈ K2
(0) such that

C ∩ ∂K = [u1, u2], C ∩ ∂T = [αu1, βu2]

for some u1, u2 ∈ R2, where 0 < α < β. Assume that the lines

` = {u1 + t(αu1 − βu2) : t ∈ R}, `′ = {βu2 + t(u1 − u2) : t ∈ R}

are support lines to K and T respectively. Then

1. There exists a unique Euclidean scalar product Q(·, ·) in R2 such that

Q(αu1 − βu2, u1) = Q(u1 − u2, u2) = 0, Q(u1, αu1) = 1. (A.1)

2. If Q is as above, then the curvilinear segment ∂G(K,T ) ∩ C is an arc of the ellipse

{v ∈ R2 : Q(v, v) = 1}.

Outline of the proof. Fix a linear map f : R2 → R2 with the following properties:

|f(u1)| = 1/
√
α, |f(u2)| = 1/

√
β, ∠(f(u1), f(u2)) = arccos

√
α/β,

where ∠(v, w) denotes the angle between the vectors v and w. For the existence in assertion 1 it is enough
to set

Q(v, v′) = 〈f(v), f(v′)〉 . (A.2)
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Uniqueness is immediate since (A.1) gives three linearly independent linear equations in the three variables
Q(u1, u1), Q(u1, u2), Q(u2, u2).

Now we prove assertion 2, keeping f from above. Note that the segment [f(u1), f(u2)] is orthogonal to the
vector f(u2), and the segment [f(αu1), f(βu2)] is orthogonal to the vector f(u1).

By construction α|f(u1)|2 = 1. Then, since the triangles (0, f(u1), f(u2)) and (0, αf(u1), βf(u2)) are both
right-angled and have the same angle at (0, 0) they are similar, so we have β|f(u2)|2 = 1.

We say that a ray R from the origin is an orthogonality ray for a convex body X ∈ K2
(0) if a line through

the point R ∩ ∂X in the direction orthogonal to R is a support line to X. The condition that ` and `′ are
support lines to K and T implies that the two rays

Ri = {tf(ui) : t > 0} (i = 1, 2)

are orthogonality rays for both f(K) and f(T ).

Note that
f(K)◦ ∩ f(C) = f(T ) ∩ f(C),

and the rays R1 and R2 are orthogonality rays for the body f(K)◦. Now we claim that

Ai(f(K), f(T )) ∩ f(C) = Ai(f(K), f(K)◦) ∩ f(C),

Hi(f(K), f(T )) ∩ f(C) = Hi(f(K), f(K)◦) ∩ f(C),

andR1 andR2 are orthogonality rays for each of the bodiesAi(f(K), f(T )), Hi(f(K), f(T )), Ai(f(K), f(K)◦),
Hi(f(K), f(K)◦). Indeed, this can be checked straightforwardly by induction over i.

Passing to the limit, we have G(f(K), f(T )) ∩ f(C) = B2
2 ∩ f(C), so by Proposition 8 we have

G(K,T ) ∩ C = f−1(B2
2) ∩ C.

Hence ∂G(K,T ) ∩ C is indeed an arc of an ellipse Q(v, v) = 1, and assertion 2 is proved.

Proof of Theorem A. We will prove the following claim. Let ε1 and ε2 be arbitrary real numbers such that
max(|ε1|, |ε2|) is small enough. Let

C = {(x, y) : x < 12y < 4x}

be an open angle. We prove that the curve ∂G ((1 + ε1)K, (1 + ε2)T ) ∩ C contains exactly one non-smooth
point, which lies on the line

x

6 + 4ε1 + 2ε2
=

y

1 + ε2
,

pointing to the vertex (3 + 2ε1 + ε2, (1 + ε2)/2) of the body 1
2 ((1 + ε1)K + (1 + ε2)T ).

We will give the proof for ε1 = ε2 = 0, as one can check that the argument is applicable in the general case.

Consider the angles
C1 = {(x, y) : 0 ≤ 6y ≤ x},

C2 = {(x, y) : x ≤ 6y ≤ 3x}.

We claim that for i = 1, 2 the curvilinear segments ∂G(K,T )∩Ci are elliptic arcs, and these arcs arise from
distinct ellipses.

We have G(K,T ) = G(K1, T1), where

K1 =
K + T

2
, T1 =

(
K◦ + T ◦

2

)◦
.
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In the positive quadrant the vertices of K1 are

u1 = (3, 0), u2 = (3, 1/2), u3 = (2, 2), u4 = (0, 4),

and the vertices of T1 in the positive quadrant are

v1 = (8/3, 0), v2 = (16/7, 8/7), v3 = (0, 4).

Clearly, Lemma B applies to K1 , T1 and each Ci. Hence ∂G(K,T ) ∩ Ci are indeed elliptic arcs.

Assume these arcs belong to the same ellipse Q(v, v) = 1. Then

Q(v1, u1 − u2) = Q(v2, u2 − u3) = Q(u2, v1 − v2) = 0.

But if
Q((x1, y1), (x2, y2)) = ax1x2 + b(x1y2 + x2y1) + cy1y2,

this would yield a = b = c = 0, a contradiction. Therefore the common point of the arcs ∂G(K,T ) ∩ Ci is a
non-smooth point of ∂G(K,T ).

Consequently, the only non-smooth point of the curve ∂G((1 + ε1)K, (1 + ε2)T ) ∩ C changes its angular
direction from the origin, even under the additional assumption (1 + ε1)(1 + ε2) = 1. This immediately
implies

G(K,T ) 6= G

(
(1 + ε1)K,

1

1 + ε1
T

)
.

Remark. Nevertheless, the identity
G(K,T ) = G(aK, a−1T ) (A.3)

holds for some wide class of two-dimensional bodies. For instance, let K0 be a regular n-gon and T0 = K◦0 .
Consider convex n-gons K and T that are obtained by arbitrary small enough perturbations of the vertices
of K0 and T0 respectively. Then Lemma B allows one to reconstruct ∂G(aK, a−1T ) completely and thus
verify that (A.3) holds true for such K and T .
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