
On isotropicity with respect to a measure

Liran Rotem

Abstract A body C is said to be isoptropic with respect to a measure µ if
the function

θ →
ˆ
C

〈x, θ〉2 dµ(x)

is constant on the unit sphere. In this note, we extend a result of Bobkov,
and prove that every body can be put in isotropic position with respect to
any rotation invariant measure.
When the body C is convex, and the measure µ is log-concave, we relate
the isotropic position with respect to µ to the famous M -position, and give
bounds on the isotropic constant.

1 Introduction

Let µ be a finite Borel measure on Rn with finite second moments. For sim-
plicity, we will always assume our measures are even, i.e. measures which
satisfy µ(A) = µ(−A) for every Borel set A. We will say that such a measure
is isotropic if the function

θ 7→
ˆ
〈x, θ〉2 dµ(x)

is constant on the unit sphere Sn−1 = {x : |x| = 1}.
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In particular, let C be an origin-symmetric and compact set in Rn with
non-empty interior. From now on, such sets will simply be called bodies. Let
λC be the restriction of the Lebesgue measure λ to the set C:

λC(A) = λ (A ∩ C) .

We say that C is isotropic if the measure λC is isotropic, i.e. if the integrals

ˆ
C

〈x, θ〉2 dx

are independent of θ ∈ Sn−1.
For a discussion of isotropic bodies and measures see, for example, [9]

and [1]. Notice that at the moment we do not assume our measures and
bodies satisfy any convexity properties, nor do we assume any normalization
condition. This will change in section 3.

In this note we will study the following notion:

Definition 1. Let µ be an even locally finite Borel measure on Rn. Let C be
a body with µ(C) > 0. We say that C is isotropic with respect to µ, or that
the pair (C, µ) is isotropic, if

ˆ
C

〈x, θ〉2 dµ(x)

is independent of θ ∈ Sn−1.

From a formal point of view, this is not a new definition. Isotropicity of the
pair (C, µ) is nothing more than isotropicity of the measure µC , where µC
is the restriction of µ to C. In particular, C is isotropic with respect to the
Lebesgue measure if and only if it is isotropic. However, this new notation is
better suited for our needs, as we want to separate the roles of µ and C.

Let us demonstrate this point by discussing the notion of an isotropic
position. It is well known that for any measure µ one can find a linear map
T ∈ SL(n) such that the push-forward T]µ is isotropic. The proof may be
written in several ways (again, see for example the proofs in [9] and [1]),
but in any case this is little more than an exercise in linear algebra. Since
T] (µC) = (T]µ)T (C) we see that for every pair (C, µ) one can find a map

T ∈ SL(n) such that (TC, T]µ) is isotropic.
However, we are interested in a different problem. For us, the measure µ is

a fixed “universal” measure, which we are unwilling to change. Given a body
C, we want to put it in an isotropic position with respect to this given µ. In
other words, we want to find a map T ∈ SL(n) such that (TC, µ) is isotropic.
This is already a non-linear problem, and it is far less obvious that such a T
actually exists.
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Of course, there is one choice of µ for which the problem is trivial. For the
Lebesgue measure λ we know that T]λ = λ for any T ∈ SL(n). Hence the
two problems coincide, and there is nothing new to prove.

There is one non-trivial case where the problem was previously solved. Let
γ be the Gaussian measure on Rn, defined by

γ(A) = (2π)
−n

2

ˆ
A

e−|x|
2/2dx.

In [2], Bobkov proved the following result:

Theorem 1. Let C be a body in Rn. If γ(C) ≥ γ(TC) for all T ∈ SL(n),
then C is isotropic with respect to γ.

If C is assumed to be convex, then the converse is also true.

A simple compactness argument shows that the map T 7→ γ(TC) attains a
maximum on SL(n) for some map T0. Theorem 1 implies that T0C is isotropic
with respect to γ.

The main goal of this note is to discuss isotropicity with respect any rota-
tion invariant measure. In the next section we will extend Bobkov’s argument,
and prove that C can be put in isotropic position with respect to any rotation
invariant measure µ. Then in section 3 we will restrict our attention to the
case where C is convex and µ is log-concave (all relevant definitions will be
given there). We will relate the isotropicity of (C, µ) to the M -position, and
give an upper bound on the isotropic constant of C with respect to µ.

2 Existence of isotropic position

In this section we will assume that µ is rotation invariant:

Definition 2. We say that µ is rotation invariant if there exists a bounded
function f : [0,∞)→ [0,∞) such that

dµ

dx
= f (|x|) .

We will always assume that f has a finite first moment, i.e.
´∞
0
tf(t)dt <∞.

Our goal is to prove that if µ is rotation invariant, then for every C one can
find a map T ∈ SL(n) such that (TC, µ) is isotropic. To do so we will need
the following definitions:

Definition 3. Let µ = f (|x|) dx be a rotation invariant measure on Rn.
Then:

1. The associated measure µ̂ is the measure on Rn with density g (|x|), where
g : [0,∞)→ [0,∞) is defined by
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g(t) =

ˆ ∞
t

sf(s)ds.

2. Given a body C we define the associated functional Jµ,C : SL(n)→ R by

Jµ,C(T ) = µ̂ (TC) =

ˆ
C

g (|Tx|) dx.

When the measure µ is obvious from the context, we will write JC instead of
Jµ,C .

As one example of the definitions, notice that for the Gaussian measure γ
we have γ̂ = γ. Hence the functional Jγ,C is exactly the one being maximized
in Bobkov’s Theorem 1.

In the general case, we have the following Proposition:

Proposition 1. Fix a rotation invariant measure µ, a body C, and T ∈
SL(n). Then (TC, µ) is isotropic if and only if T is a critical point of Jµ,C .

Proof. We will first show that the identity matrix I is a critical point for JC
if and only if (C, µ) is isotropic. Indeed, I is a critical point if and only if

d

dt

∣∣∣∣
t=0

JC
(
etA
)

= 0

for all maps A ∈ sl(n), i.e. all linear maps A with TrA = 0.
An explicit calculation of the derivative gives

d

dt

∣∣∣∣
t=0

JC
(
etA
)

=
d

dt

∣∣∣∣
t=0

(ˆ
C

g
(∣∣etAx∣∣) dx) =

ˆ
C

(
d

dt

∣∣∣∣
t=0

g
(∣∣etAx∣∣)) dx

=

ˆ
C

g′ (|x|) ·
〈
x

|x|
, Ax

〉
dx = −

ˆ
C

|x| f (|x|)
〈
x

|x|
, Ax

〉
dx

= −
ˆ
C

〈x,Ax〉 dµ(x).

Hence we see that I is a critical value for JC if and only if

ˆ
C

〈x,Ax〉 dµ(x) = 0

for all maps A with TrA = 0. This condition is known and easily seen to be
equivalent to isotropicity of (C, µ).

So far we have proved the result only for T = I. For general case notice
that JTC(S) = JC (ST ) for every S, T ∈ SL(n). Hence T is a critical point
for JC if and only if I is a critical point for JTC , which holds if and only if
(TC, µ) is isotropic.

From here it is easy to deduce the main result:
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Theorem 2. Let µ be a rotation invariant measure on Rn, and let C be a
body in Rn. Then there exists a map T ∈ SL(n) such that TC is isotropic
with respect to µ.

Proof. Write sn(T ) for the smallest singular value of a map T ∈ SL(n). It is
not hard to see that Jµ,C(T )→ 0 as sn(T )→ 0. Since

{T ∈ SL(n) : sn(T ) ≥ ε}

is compact, it follows that Jµ,C attains a global maximum at some point T .
In particular, T is a critical point for Jµ,C , so (TC, µ) is isotropic.

Remark 1. When µ = γ and the body C is convex, the functional Jµ,C has a
unique positive definite critical point. In other words, there exists a positive
definite matrix S ∈ SL(n) such that the set of critical points of Jµ,C is exactly
{US : U ∈ O(n)}. Moreover, every such critical point is a global maximum.
The proof of these facts, which appears in [2], is based on the so-called (B)
conjecture, proved by Cordero-Erausquin, Fradelizi and Maurey ([5]). This
fact explains the second half of Theorem 1. It also implies that the isotropic
position with respect to γ is unique, up to rotations and reflections.

For general measures µ, we have no analog of the (B) conjecture, and so
Jµ,C may have critical points which are not the global maximum. Hence we
define:

Definition 4. We say that C is in principle isotropic position with respect
to µ if Jµ,C is maximized at the identity matrix I.

Proposition 1 shows that if C is in principle isotropic position with respect
to µ, then it is also isotropic with respect to µ in the sense of Definition
1. If the (B) conjecture happens to hold for the measure µ, then these two
notions coincide. However, we currently know the (B) conjecture for very few
measures: the original result concerns the Gaussian measure, and Livne Bar-
On has recently proved the conjecture when µ is a uniform measure in the
plane ([7]).

Let us conclude this section with one application of Theorem 2 for isotropicity
of bodies:

Proposition 2. Let B be a Euclidean ball of some radius r > 0. Then for
every body C one can find a map T ∈ SL(n) such that TC ∩B is isotropic.

Proof. Let µ = λB be the uniform measure on B. µ is rotation invariant, so
we can apply Theorem 2 and find a map T ∈ SL(n) such that TC is isotropic
with respect to µ. This just means that µTC = λTC∩B is an isotropic measure,
or that TC ∩B is an isotropic body.

Following Proposition 2, Prof. Bobkov asked about an interesting variant
concerning Minkowski addition. Recall that the Minkowski sum of sets A,B ⊆
Rn is defined by
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A+B = {a+ b : a ∈ A, b ∈ B} .

Bobkov then posed the following question:

Problem 1. Let B be a Euclidean ball of some radius r > 0. Given a convex
body C, is it always possible to find T ∈ SL(n) such that TC+B is isotropic?

Unfortunately, we do not know the answer to this question.

3 properties of isotropic pairs

Let µ be an (even) isotropic measure with density f . The isotropic constant
of µ is defined as

Lµ =
f(0)

1
n

µ (Rn)
1
n+ 1

2

(ˆ
〈x, θ〉2 dµ(x)

) 1
2

.

We define the isotropic constant of the pair (C, µ) to be the isotropic constant
of µC , so

L (C, µ) =
f(0)

1
n

µ (C)
1
n+ 1

2

(ˆ
C

〈x, θ〉2 dµ(x)

) 1
2

.

A major open question, known as the slicing problem, asks if LK =
L (K,λ) is bounded from above by a universal constant for every dimen-
sion n and every isotropic convex body K in Rn (see [9] for a much more
information). It turns out that for certain rotation invariant measures µ it is
possible to give an upper bound on L (K,µ) whenever K is a convex body
in principle isotropic position with respect to µ. In the Gaussian case, this
was done by Bobkov in [2]. We will demonstrate how his methods can be ex-
tended, starting with the case where µ is a uniform measure on the Euclidean
ball.

In order to prove our result, we will need the notion of M -position. Let B
be the Euclidean ball of volume (Lebesgue measure) 1. A convex body K of
volume 1 is said to be in M -position with constant C > 0 if

|K ∩B| ≥ C−n.

There are many other equivalent ways to state this definition, but this defi-
nition will be the most convenient for us. A remarkable theorem of Milman
shows that for every convex body K of volume 1 there exists a map T ∈ SL(n)
such that TK is in M -position, with some universal constant C (see [8]).

After giving all the definitions, we are ready to prove the following:

Theorem 3. Let K be a convex body of volume 1 such that K ∩B is in prin-
ciple isotropic position (i.e. K is in principle isotropic position with respect
to µ, when µ is the uniform measure on B). Then
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1. K is in M -position. In fact

|K ∩B| ≥
(

1

2

)n+1

sup
T∈SL(n)

|TK ∩B| ≥ C−n

for some universal C > 0.
2. The isotropic constant of K ∩B is bounded by an absolute constant.

Proof. We should understand how JK,µ looks in this special case. If we denote
the radius of B by r, then dµ = f(|x|)dx, where f = 1[0,r]. Hence

g(t) =

ˆ ∞
t

s · 1[0,r](s)ds =

{
r2−t2

2 t ≤ r
0 t > r,

and

JK(T ) =

ˆ
TK

g (|x|) dx =

ˆ
TK∩B

r2 − |x|2

2
dx.

Notice that JK(T ) is almost the same as the volume |TK ∩B| (properly
normalized) for every T ∈ SL(n) . Indeed, on the one hand we have

JK(T ) =

ˆ
TK∩B

r2 − |x|2

2
dx ≤

ˆ
TK∩B

r2

2
dx =

r2

2
|TK ∩B| ,

and on the other hand we have

JK(T ) =

ˆ
TK∩B

r2 − |x|2

2
dx ≥

ˆ
TK∩B

2

r2 − |x|2

2
dx

≥
ˆ

TK∩B
2

r2 −
(
r
2

)2
2

dx =
3

8
r2
∣∣∣∣TK ∩B2

∣∣∣∣ ≥ (1

2

)n+1
r2

2
|TK ∩B| .

Since K is in principle isotropic position we know that for every T ∈ SL(n)
we have JK(T ) ≤ JK(I), and then

|TK ∩B| ≤ 2n+1 · 2

r2
JK (T ) ≤ 2n+1 2

r2
JK(I) ≤ 2n+1 |K ∩B| ,

so the first inequality of (1) is proven. In particular, by Milman’s theorem we
get that |K ∩B| ≥ C−n for some universal constant C > 0.

Finally, in order to prove (2), Notice that it follows from the definition
that

LK∩B =
1

|K ∩B| 1
n+ 1

2

(ˆ
K∩B

|x|2

n
dx

) 1
2

.

Since B has radius ≤ C
√
n we get that
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LK∩B ≤
1

|K ∩B| 1
n+ 1

2

·
(ˆ

K∩B

C2n

n
dx

) 1
2

=
C

|K ∩B|
1
n

≤ C ′,

and the theorem is proven.

What happens for general rotation invariant measures µ? In order to prove a
similar estimate, we will need to assume that the measure µ is log-concave:

Definition 5. A Borel measure µ on Rn is log-concave if for every Borel sets
A and B and every 0 < λ < 1 we have

µ (λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

Borel ([3], [4]) gave a simple and useful characterization of log-concave mea-
sures: assume µ is not supported on any affine hyperplane. Then µ is log-
concave if and only if µ has a density f , which is log-concave. Log-concavity
of f just means that (− log f) is a convex function.

For log-concave measures we have the following bound on the isotropic
constant of (K,µ):

Proposition 3. Let µ be a log-concave, rotation invariant measure on Rn,
and let K ⊆ Rn be a convex body. Then

L(K,µ) ≤ C · µ (Rn)
1
n · µ(K)−

1
n

for some universal constant C > 0.

Proof. Write dµ(x) = f (|x|) dx. Since both sides of the inequality are invari-
ant to a scaling of f , we may assume without loss of generality that f(0) = 1.

Recall the following construction of Ball ([1]): If µ is a log-concave measure
with density f , and p ≥ 1, we define

Kp(µ) =

{
x ∈ Rn :

ˆ ∞
0

f(rx)rp−1dr ≥ f(0)

p

}
.

Ball proved that Kp(µ) is a convex body, but we won’t need this fact in
our proof. We will need that fact that if p = n + 1 and f(0) = 1, then
LKn+1(µ) � Lµ and |Kn+1(µ)| � µ (Rn). This is proven, for example, in

Lemma 2.7 of [6]. Here the notation A � B means that A
B is bounded from

above and from below by universal constants.
Since our µ is rotation invariant, Kn+1 (µ) is just a Euclidean ball. If we

denote its radius by R, then

µ (Rn)
1
n � |Kn+1(µ)|

1
n � R√

n
.

Now we turn our attention to the body K̃ = Kn+1 (µK). It is obvious that

K̃ ⊆ Kn+1 (µ) . Hence we get
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L (K,µ) � LK̃ =
1∣∣∣K̃∣∣∣ 1
n+ 1

2

(ˆ
K̃

|x|2

n
dx

) 1
2

≤ 1∣∣∣K̃∣∣∣ 1
n+ 1

2

(ˆ
K̃

R2

n
dx

) 1
2

=
R√
n
·
∣∣∣K̃∣∣∣− 1

n � µ (Rn)
1
n · µK (Rn)

− 1
n = µ (Rn)

1
n · µ (K)

− 1
n ,

and the proof is complete.

Therefore in order to bound L (K,µ) from above we need to bound µ(K)
from below. Notice that we have three distinct functionals on SL(n):

T 7→ µ(TK)

T 7→ JK,µ(T ) = µ̂(TK)

T 7→ |TK ∩B| .

The estimates of Theorem 3 only depend on these functionals being close
to each other. More concretely, we have the following:

Theorem 4. Let µ be a log-concave rotation invariant measure on Rn, and
let K ⊆ Rn be a convex body of volume 1, which is in principle isotropic
position with respect to µ. Assume that

sup
T∈SL(n)

JK,µ(T )

|TK ∩B|
≤ an · inf

T∈SL(n)

JK,µ(T )

|TK ∩B|
,

and that
µ(K) ≥ b−n · |K ∩B| .

Then:

1. K is in M-position with constant C · a for some universal C > 0.

2. L(K,µ) ≤ Cµ (Rn)
1
n · ab for some universal constant C > 0.

Proof. There is very little to prove here. For (1), define for simplicity

m = inf
T∈SL(n)

JK,µ(T )

|TK ∩B|
.

Then for every T ∈ SL(n) we have

|TK ∩B| ≤ 1

m
· JK,µ(T ) ≤ 1

m
· JK,µ(I) ≤ anm

m
· |K ∩B| = an |K ∩B| .

By this estimate and Milman’s theorem, it follows that K is in M -position
with constant C · a.

Now for (2) we use Proposition 3 together with part (1) and immediately
obtain
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L(K,µ) ≤ Cµ (Rn)
1
n µ(K)−

1
n ≤ Cµ (Rn)

1
n · b |K ∩B|−

1
n

≤ Cµ (Rn)
1
n · b · (Ca) = C ′µ (Rn)

1
n · ab

Of course, in general there is no reason for a and b to be small. However, for
any specific µ, one may try and compute explicit values for these constants.
Both Theorem 3 and Bobkov’s theorem in the Gaussian case follow from this
general scheme.
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