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1 Introduction

We begin by quickly recalling some basic definitions from convex geometry. We refer the reader to
[20] for more information. We will denote by Kns the class of origin-symmetric convex bodies in Rn,
i.e. convex sets K ⊆ Rn such that K is compact, has non-empty interior, and K = −K. While
some of the definitions given in this note make sense for non-symmetric bodies, symmetry will be
important for the main results.

For a convex K ∈ Kns its support function hK : Rn → [0,∞) is defined by

hK(y) = max
x∈K
〈x, y〉 .

The function hK uniquely defines the body K. The Minkowski sum K + T of two convex bodies
K and T is defined by

K + T = {x+ y : x ∈ K, y ∈ T} .

Similarly, for λ > 0 we define λK = {λx : x ∈ K}. The Minkowski sum and the support function
are related by the identity hλK+T = λhK + hT .

Ellipsoids will play a special role in this note. For us an ellipsoid will always mean a centered
ellipsoid, which is a linear image of the Euclidean ball

Bn
2 = {x : |x| ≤ 1} .

For every ellipsoid E there exists a unique positive definite linear map uE such that hE(y) =√
〈uEy, y〉, where 〈·, ·〉 denotes the standard scalar product on Rn. Conversely, for every positive

definite map u the function h(y) =
√
〈uy, y〉 is the support function of some ellipsoid. It follows

that one may identify the class of ellipsoids in Rn with the class of all n × n positive definite
matrices. However, let us warn the reader that if E1 and E2 are ellipsoids then E1 + E2 is usually
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not an ellipsoid. The sum of two ellipsoids is an ellipsoid if one replaces the standard notion of
Minkowski addition with the 2-addition, as defined by Firey ([9]) and studied extensively by Lutwak
and others (see, e.g. [12], [13]). We will not need 2-additions in this note.

For a body K, the support function hK is a norm on Rn. Its unit ball is the polar body of K,
which is denoted by K◦:

K◦ = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ K} .

The polarity map K 7→ K◦ can be characterized as the unique order reversing involution on Rn.
To be exact, we have the following result:

Theorem 1. Fix n > 1, and let T : Kns → Kns be a map such that:

• T is an involution: T TK = K for every K ∈ Kns .

• T is order reversing: If K1 ⊆ K2 for some K1,K2 ∈ Kns then TK1 ⊇ TK2.

Then there exists an invertible symmetric linear map u such that TK = uK◦.

For the class Kns , this theorem follows from a result of Gruber ([10]). Similar results on different
classes of convex bodies were proved by Artstein-Avidan and Milman ([1]) and by Böröczky and
Schneider ([6]).

The class of convex functions is also equipped with a unique order reversing involution. More for-
mally, let Cvx (Rn) denote the class of lower semi-continuous convex functions ϕ : Rn → (−∞,∞].
The Legendre transform, mapping a function ϕ to

ϕ∗(y) = sup
x∈Rn

(ϕ(x)− 〈x, y〉)

is an order reversing involution. As was shown by Artstein-Avidan and Milman in [2], it is essentially
the only such transform:

Theorem 2. Fix n > 1, and let T : Cvx (Rn)→ Cvx (Rn) be a map such that:

• T is an involution: T (T ϕ) = ϕ for all ϕ ∈ Cvx (Rn).

• T is order reversing: If ϕ1 ≤ ϕ2 then T ϕ1 ≥ T ϕ2.

Then there exists a constant C ∈ R, a vector v ∈ Rn, and an invertible symmetric linear map u
such that

(T ϕ) (x) = ϕ∗ (ux+ v) + 〈x, v〉+ C.

On the set of positive numbers there is also a very natural order reversing bijection – the inversion
map x→ x−1. Because of this similarity between the polarity map, the Legendre transform and the
inversion map, we would like to think about the polar body K◦ and the Legendre transform ϕ∗ as
the inverses “K−1” and “ϕ−1”. Under this interpretation, most constructions we know in convexity
are “rational constructions” – built by a finite number of additions and “inversions”. It appears
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that the time has come for “irrational constructions” as well. For example, in [15] Molchanov uses
this ideology to build continued fractions of convex bodies and convex functions. In particular, if
K ⊇ Bn

2 is a compact convex body then the process(
K + (K + (K + · · · )◦)◦

)◦
converges to a limit Z. This Z is the unique solution of the “quadratic equation” Z◦ = Z + K.
More generally, one may also consider periodic continued fractions with period> 1 to be solutions
of more generalized quadratic equations.

Another paper in this direction is [19], where a surprising identity for convex functions is proved
using the same ideology.

2 Geometric mean of convex bodies; Ellipsoidal version

For every ellipsoid E we have uE◦ = (uE)
−1. In other words, the polarity operation on the class

of ellipsoids corresponds to the inversion u 7→ u−1 on the class of positive definite matrices. The
inversion map is also an order-reversing involution, when the order is the standard matrix order:
u1 < u2 if u1 − u2 is positive semidefinite.

For two positive definite matrices u and v, their arithmetic mean is of course u+v
2 and their harmonic

mean is
(
u−1+v−1

2

)−1
. The geometric mean of such matrices is more difficult to define: if u and v

commute then uv is positive definite and one may simply consider (uv)
1
2 , but if the matrices do not

commute then this square root is not well defined. However, there exists a useful notion of such a
geometric mean, which was first discovered by Pusz and Woronowicz in [17]. An explicit formula
for the geometric mean of u and v is

u#v = u
1
2

(
u−

1
2 vu−

1
2

) 1
2
u

1
2 . (2.1)

This formula does not have an obvious analogue for convex bodies because we do not know what is
means to “multiply” two such bodies. However, it turns out that there is another way to construct
u#v. If one defines two sequences {um}∞m=0 and {vm}∞m=0 by

u0 = u v0 = v

um+1 =
um + vm

2
vm+1 =

(
u−1
m + v−1

m

2

)−1

,

then limm→∞ um = limm→∞ vm = u#v. The reader may consult [11] for a survey on the matrix
geometric mean, including a proof that this definition is equivalent to the previous one.

Based on the analogy between polarity and inversion, one may make the following definition (see
[14]) :

Definition 3. Fix convex bodies K,T ∈ Kns , define two sequences {Am}∞m=0 and {Hm}∞m=0 by

A0 = K H0 = T

Am+1 =
Am +Hm

2
Hm+1 =

(
A−1
m +H−1

m

2

)−1

.
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The geometric mean of K and T is

g(K,T ) = lim
m→∞

Am = lim
m→∞

Hm.

A proof that these limits exist (in the Hausdorff sense) and are equal to each other appears in [14].
A very similar construction for 2-homogeneous functions was carried out by Asplund in [3], for very
different reasons. His paper inspired Milman, who had a talk on the subject in Vulich Seminar (in
70/71). One of the participants in this seminar was Fedotov, who later published a short paper on
the subject ([8]).

The geometric mean has many desirable properties, which are summarized in the following propo-
sition:

Proposition 4 ([14]). 1. g(K,K) = K.

2. g is symmetric in its arguments: g(K,T ) = g(T,K).

3. g is monotone in its arguments: If K1 ⊆ K2 and T1 ⊆ T2 then g(K1, T1) ⊆ g(K2, T2).

4. g satisfies the harmonic mean – geometric mean – arithmetic mean inequality(
K◦ + T ◦

2

)◦
⊆ g(K,T ) ⊆ K + T

2
.

5. [g(K,T )]◦ = g (K◦, T ◦).

6. g(K,K◦) = Bn
2 .

7. For any linear map u we have g(uK, uT ) = u (g(K,T )). In particular g(λK, λT ) = λg(K,T ).

It turns out that the geometric mean of ellipsoids is not a new concept. In fact, if E1, E2 are
ellipsoids then g(E1, E2) is also an ellipsoid, and ug(E1,E2) = uE1#uE2 (this property was also proved
in [14]). Note that this property is somewhat surprising: because we do not have a property like
uE1+E2 = uE1 + uE2 , the iteration process for the matrices and the ellipsoids is different. We do
not have in general uAm = um, and in fact Am is almost never an ellipsoid. Still, in the limit one
obtains an ellipsoid, which is exactly the one represented by the matrix uE1#uE2 .

Despite its many useful properties, the geometric mean g does not satisfy one important property:

Definition 5. We say that a map Φ : Kns ×Kns → Kns has the scaling property if for every K,T ∈ Kns
and every α, β > 0 we have

Φ(αK, βT ) =
√
αβΦ(K,T ).

This is definitely a natural property to expect from a geometric mean. A 2-dimensional example,
constructed by Magazinov for an appendix of [14], shows that the scaling property is not satisfied
by the geometric mean as constructed in Definition 3. In [18], the second author constructed a
variant of the geometric mean which shares its good properties and also has the scaling property.
The construction uses a new concept of geometric Banach limits for sequences of convex bodies:
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Definition 6. Let BKn denote the class of uniformly bounded sequences of convex bodies:

BKn =

{
{Km}∞m=1 :

There exists r,R > 0 such that
r ·Bn

2 ⊆ Km ⊆ R ·Bn
2 for all m

}
.

A geometric Banach limit is a function L : BKn → Kns with the following properties:

1. L is shift invariant: L ({Km}) = L ({Km+1}) .

2. If Km → K in the Hausdorff metric then L ({Km}) = K.

3. If Km ⊇ Tm for all m then L ({Km}) ⊇ L ({Tm}).

4. For any invertible linear map u we have L ({uKm}) = uL ({Km}).

5. L ({λKm}) = λL ({Km}) for all λ > 0.

6. L ({K◦n}) = L ({Kn})◦ .

It is the last property that makes the construction of a geometric Banach limit a delicate matter.
Surprisingly, the construction of L uses the geometric mean of convex bodies, even though they
are not mentioned in the definition. For the full details, as well as the construction of the new
geometric mean, the reader may consult [18].

We would like to now present another variant of g that has the scaling property, which may be
simpler than the one constructed in [18]. However, for our construction it is important that the
bodies are centrally symmetric, while the Banach limit construction works just as well for non-
symmetric convex bodies. To present the construction we will need the following definition:

Definition 7. For K,T ∈ Kns , the upper ellipsoidal envelope of K and T is

g(K,T ) =
⋂
{g(E1, E2) : K ⊆ E1 and T ⊆ E2} .

Similarly, the lower ellipsoidal envelope of K and T is

g(K,T ) = conv
⋃
{g(E1, E2) : K ⊇ E1 and T ⊇ E2} ,

where conv denotes the convex hull.

Using the explicit formula (2.1) it is easy to check that the matrix geometric mean has the scaling
property:

(αu) # (βv) =
√
αβ · (u#v) .

The relation ug(E1,E2) = uE1#uE2 then implies that the geometric mean has the scaling property for
ellipsoids. It follows that the ellipsoidal envelopes also have the scaling property.

However, each of the ellipsoidal envelopes by itself is not a good candidate to be a“geometric mean”.
For example, there is no reason for the relation g (K,K◦) = Bn

2 to be true for an arbitrary K ∈ Kns .
This is a fundamental property which corresponds to the numerical fact that the geometric mean
of x and 1

x is 1.

It turns out that even though each of the envelopes by itself is not a good geometric mean, they
can be combined to create a very good candidate:
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Definition 8. The ellipsoidal geometric mean of K and T is

G(K,T ) = g
(
g (K,T ) , g(K,T )

)
.

As promised, the ellipsoidal geometric mean satisfies all of the basic properties of the original
geometric mean, and also has the scaling property:

Theorem 9. The ellipsoidal geometric mean has the following properties:

1. G(K,K) = K.

2. G is symmetric in its arguments: G(K,T ) = G(T,K).

3. G is monotone in its arguments: If K1 ⊆ K2 and T1 ⊆ T2 then G(K1, T1) ⊆ G(K2, T2).

4. G satisfies the harmonic mean – geometric mean – arithmetic mean inequality(
K◦ + T ◦

2

)◦
⊆ G(K,T ) ⊆ K + T

2
.

5. [G(K,T )]◦ = G (K◦, T ◦).

6. G(K,K◦) = Bn
2 .

7. For any linear map u we have G(uK, uT ) = u (G(K,T )).

8. G has the scaling property: G(αK, βT ) =
√
αβG(K,T ).

Proof. Properties (2), (3) and (7) are obvious from the corresponding properties of g. For (5) notice
that

g(K,T )◦ = g(K◦, T ◦).

Hence

[G(K,T )]◦ = g
(
g (K,T ) , g(K,T )

)◦
= g

(
g (K,T )◦ , g(K,T )◦

)
= g

(
g (K◦, T ◦) , g(K◦, T ◦)

)
= G(K◦, T ◦).

Property (6) is a corollary of (5): We have G(K,K◦)◦ = G (K◦,K◦◦) = G(K,K◦), and it is well
known that the only solution to the equation X = X◦ is X = Bn

2 .

To prove property (4), fix ε > 0 and a unit vector θ ∈ Rn. Choose an ellipsoids E1 such that
E1 ⊇ K and hE1(θ) ≤ hK(θ) + ε (To see that such an ellipsoid exists, take the “supporting slab”
{x ∈ Rn : |〈x, θ〉| ≤ hk(θ)} and approximate it by an ellipsoid). Similarly, choose an ellipsoid E2

such that E2 ⊇ K and hE2(θ) ≤ hK(θ) + ε. It follows that

hg(K,T )(θ) ≤ hg(E1,E2)(θ) ≤ hE1+E2
2

(θ) =
hE1(θ) + hE2(θ)

2

≤ hK(θ) + hT (θ)

2
+ ε = hK+T

2
(θ) + ε.
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Since this is true for all ε > 0 and all directions θ we conclude that g(K,T ) ⊆ K+T
2 . Since the same

is trivially true for g(K,T ) we may conclude that

G(K,T ) = g
(
g (K,T ) , g(K,T )

)
⊆ g

(
K + T

2
,
K + T

2

)
=
K + T

2
.

Applying the same inequality to K◦ and T ◦we see that

G (K,T )◦ = G (K◦, T ◦) ⊆ K◦ + T ◦

2
,

and the harmonic mean – geometric mean inequality follows by taking the polar of both sides. This
completes the proof of property (4). Of course, (1) follows immediately.

Finally, for property (8), we already explained why the ellipsoidal envelopes have the scaling prop-
erty. But then

G(αK, βT ) = g
(
g (αK, βT ) , g(αK, βT )

)
= g

(√
αβ · g (K,T ) ,

√
αβ · g(K,T )

)
=
√
αβ · g

(
g (K,T ) , g(K,T )

)
=
√
αβ ·G(K,T ),

and the proof is complete.

We do not know if a map Φ : Kns × Kns → Kns satisfying properties (1)–(8) of the above theorem
must coincide with G.

We conclude this section with several notes. First, as the unique self-polar convex body, the
Euclidean ball Bn

2 plays the role of the number 1 or the identity matrix. It follows that we may
think of the body G(K,Bn

2 ) as the square root
√
K. It is interesting to notice that even though√

K is defined for every K ∈ Kns , the equation
√
X = K does not always have a solution. This is

essentially because

dBM

(√
X,Bn

2

)
≤
√
dBM (X,Bn

2 ),

where dBM denotes the Banach-Mazur distance (see [14]). Combined with John’s theorem, we see

that dBM

(√
X,Bn

2

)
≤ n

1
4 , so

√
X can never be a cube for example. In other words, even though

every convex body has a square root, not every convex body has a square.

There exist in the literature other attempts to define the geometric mean of two convex bodies K
and T . In [5], Böröczky, Lutwak, Yang and Zhang construct the following “0-mean”, or “logarithmic
mean”, of convex bodies:

L(K,T ) =
{
x ∈ Rn : 〈x, θ〉 ≤

√
hK(θ)hT (θ) for all θ ∈ Sn−1

}
(their construction is for arbitrary weights λ and 1−λ. Here we only cite the symmetric case λ = 1

2).

In other words, L = L(K,T ) is the largest convex function such that hL(θ) ≤
√
hK(θ)hT (θ) for all

θ ∈ Sn−1.

This definition is similar in many ways to the upper ellipsoidal envelope g(K,T ). To see this, let

S1 = {x : |〈x, θ〉| ≤ a}
S2 = {x : |〈x, η〉| ≤ b}
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be two slabs. Even though S1, S2 /∈ Kns , since they are not compact, one may approximate them
by ellipsoids and arrive at a natural definition for g(S1, S2). The result will be that g(S1, S2) = Rn
whenever θ 6= η, and

g (S1, S2) =
{
x : |〈x, θ〉| ≤

√
ab
}

if θ = η. From here we see that

L(K,T ) =
⋂
{g(S1, S2) : K ⊆ S1 and T ⊆ S2} ,

which is very similar to the definition of g(K,T ). It follows immediately that g(K,T ) ⊆ L(K,T ).
Like g the mean L will also have the scaling property, but does not satisfy the polarity property
[g(K,T )]◦ = g (K◦, T ◦).

Another possible “geometric mean” was studied by Cordero-Erausquin and Klartag in [7], following
a previous work of Semmes ([21]). Let u0, u1 : Rn → R be (sufficiently smooth) convex functions.
A p-interpolation between u0 and u1 is a function u : [0, 1] × Rn → R such that u(0, x) = u0(x),
u(1, x) = u1(x), and u(t, x) satisfies the PDE

∂2
ttu =

1

p

〈
(Hessxu)−1∇∂tu,∇∂tu

〉
.

Here we will care about the case p = 2. Given u0 and u1 it is not clear that this PDE has a solution,
let alone a unique solution. However, it is not hard to check that if u0 = 1

2h
2
K and u1 = 1

2h
2
T for

some bodies K and T , then ut = 1
2h

2
Rt

(assuming it exists) for some family of convex bodies
Rt = Rt (K,T ). The body R1/2(K,T ) is a possible candidate for the geometric mean whenever it
is well-defined.

Finally, once the geometric mean is defined, one may use it for other constructions. For example,
the Gauss arithmetic-geometric mean in the same way it is done for numbers (see, e.g. [16]): Given
A0, B0 we set

An+1 =
An +Bn

2
Bn+1 = G(An, Bn)

The common limit limn→∞An = limn→∞Bn, which always exists, is the arithmetic-geometric mean
of A0 and B0. We will denote it by Mag(A0, B0). The geometric-harmonic mean, Mhg(A0, B0), is
defined similarly.

Special properties of these two constructions seem interesting to us. For example, it is proved in
[16] that for numbers we have

Mgh(N, 1) =
2

π
log 4N +O

(
1/N2

)
.

Is there an analogue for this result for Mgh(K,Bn
2 ) ?

3 Powers of convex bodies

In the previous section we saw how it is possible to first compute the geometric mean for ellipsoids,
and then use its good properties to construct a geometric mean for arbitrary convex bodies. One
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may use the same idea to define other functions on the class of convex bodies: because of the iden-
tification between ellipsoids and positive definite matrices, we can apply many standard functions
on the class of ellipsoids.

We consider in this article the case of the power map x 7→ xα. For ellipsoids, the definition is
obvious:

Definition 10. If E is an ellipsoid and α ∈ R, we define the ellipsoid Eα by the relation uEα = (uE)
α.

This definition makes sense for all α, because uα is well-defined and positive definite for any positive
definite matrix u. However, we will concentrate on the case 0 < α < 1, because in this case the
power map is operator monotone:

Definition 11. A map f on the class of positive definite matrices is called operator monotone if
u < v implies f(u) < f(v).

A proof of this fact that uα is operator monotone whenever 0 < α < 1 can be found in [4], Theorem
V.1.9. For α > 1 the function u 7→ uα is not operator monotone. In particular, the square u 7→ u2

is not operator monotone – see example V.I.2 in [4]. This is related to our previous remark that
not every convex body has a square.

From the monotonicity of u 7→ uα the following result is obvious:

Proposition 12. The maps E 7→ Eα defined on the class of ellipsoids have the following properties:

1. For every 0 < α < 1, if E1 ⊆ E2 then Eα1 ⊆ Eα2 .

2. For every 0 < α < 1, every ellipsoid E and every λ > 0 we have (λE)α = λαEα.

3. For every 0 < α, β < 1 and every ellipsoid E, (Eα)β = Eαβ.

We would like to extend this power map to all centrally symmetric convex bodies. Thanks to the
monotonicity of the power function, we may use the idea of ellipsoidal envelopes. We choose rather
arbitrarily to work with upper envelopes and define:

Definition 13. For every 0 < α < 1 and every K ∈ Kns we set

Pα(K) =
⋂
{Eα : K ⊆ E} .

The map K 7→ Pα (K) is obviously monotone. Furthermore, if E is any ellipsoid such that E ⊇ K,
then Eα ⊇ Pα(K), which implies that Eαβ = (Eα)β ⊇ Pβ (Pα (K)). Intersecting over all E we
see that Pαβ(K) ⊇ Pβ (Pα (K)). Unfortunately, in general there is no reason for the equality
Pαβ(K) = Pβ (Pα (K)) to hold.

To fix this problem, we refine our definition of the power. Our construction will be similar in spirit
to the construction of the integral using Darboux sums. Fix some 0 < α < 1, and let Π be a finite
partition of [α, 1]:

Π : α = t0 < t1 < · · · < tm = 1.
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Setting si = ti−1/ti for i = 1, 2, ..m, we define

PΠ(K) = (Ps1 ◦ Ps2 ◦ · · · ◦ Psm) (K) ,

where ◦ denotes the composition.

We say that a partition Π is a refinement of Π̃ if Π ⊇ Π̃, i.e. Π is obtained from Π̃ by adding points.
As the partition Π becomes more refined, the body PΠ(K) becomes smaller:

Lemma 14. Assume Π ⊇ Π̃ are partitions of [α, 1]. Then for every convex body K ∈ Kns one has
PΠ(K) ⊆ P

Π̃
(K).

Proof. Of course, it is enough to prove the result when |Π| =
∣∣∣Π̃∣∣∣+ 1. Let

Π : α = t0 < t1 < · · · < tm = 1

be a partition, and assume Π̃ is obtained from Π by removing the point tk. Denote by Π1 the
partition {t0, t1, . . . , tk−1} and by Π2 the partition {tk+1, tk+2, . . . , tm}. Then

PΠ = PΠ1 ◦ Ptk/tk−1
◦ Ptk+1/tk ◦ PΠ2 ,

while
P

Π̃
= PΠ1 ◦ Ptk+1/tk−1

◦ PΠ2

(the operators PΠ1 and PΠ2 are defined in the obvious way, even though Π1 and Π2 are not partitions
of [α, 1]).

As we already explained, for every convex body T we have

Ptk/tk−1
◦ Ptk+1/tk (T ) ⊆ Ptk+1/tk−1

(T ) .

Choosing T = PΠ2 (K), and using the fact that PΠ1 is monotone, we conclude the proof.

We may now define:

Definition 15. For every K ∈ Kns and 0 < α < 1 we define

Kα =
⋂
Π

PΠ (K) ,

where the intersection is taken over all partitions of [α, 1].

Notice that if E is an ellipsoid then PΠ (E) = Eα for every partition Π of [α, 1], which means this
definition is really an extension of Definition 10. Of course, we did not need Lemma 14 for Kα

to be well-defined, as one can take intersections of arbitrary families of convex bodies. However,
Lemma 14 is crucial for the following result, which shows that we can approximate Kα using sets
of the form PΠ (K):

Proposition 16. Fix K ∈ Kns and 0 < α < 1. Then for every ε > 0 one may find a partition Π of
[α, 1] such that

Kα ⊆ PΠ(K) ⊆ (1 + ε)Kα.
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Proof. The inequality Kα ⊆ PΠ(K) holds trivially for every partition Π, so we only need to prove
the second inequality.

To prove it, assume by contradiction that PΠ (K) 6⊆ (1 + ε)Kα for every partition Π. Set

AΠ = PΠ (K) \ int ((1 + ε)Kα) 6= ∅,

where int denotes the interior of a set. We claim that the family {AΠ}Π has the finite intersection
property: the intersection of finitely many sets AΠ1 , AΠ2, . . . , AΠm is never empty. Indeed, if we
denote Π = Π1 ∪Π2 ∪ · · · ∪Πm then AΠ 6= ∅ by the assumption, and AΠ ⊆ AΠi for i = 1, 2, ..,m by
Lemma 14.

Since the sets AΠ are all compact, the finite intersection property implies that
⋂

ΠAΠ 6= ∅. If we
choose a point a in this intersection, then on the one hand a /∈ int ((1 + ε)Kα), and on the other
hand a ∈ PΠ(K) for all Π, which implies that a ∈

⋂
Π PΠ(K) = Kα. Since Kα ⊂ int ((1 + ε)Kα)

we arrived at a contradiction, and the proof is complete.

The main result of this section is that the power map K 7→ Kα, as defined in Definition 15, has
the following properties (as it had for ellipsoids):

Theorem 17. The maps K 7→ Kα defined on Kns have the following properties:

1. For every 0 < α < 1, if K ⊆ T then Kα ⊆ Tα.

2. For every 0 < α < 1, every K ∈ Kns and every λ > 0 we have (λK)α = λαKα.

3. For every 0 < α, β < 1 and every K ∈ Kns we have (Kα)β = Kαβ.

Proof. Properties (1) and (2) are obvious: these properties pass from Pα(K) to PΠ(K) and then
to Kα.

Next we prove property (3). Let

Π : αβ = t0 < t1 < · · · < tm = 1

be any partition of [αβ, 1], and let k be the maximal index such that tk < α. Let Π1 = {t0, t1, . . . , tk, α}
be a partition of [αβ, α], and Π2 = {α, tk+1, tk+2, . . . , tm} be a partition of [α, 1]. Finally, let

Π̃1 =

{
t0
α
,
t1
α
, . . . ,

tk
α
, 1

}
be a partition of [β, 1]. Notice that by definition we have PΠ1 = P

Π̃1
. Since Π1 ∪Π2 ⊇ Π we have

PΠ (K) ⊇ PΠ1∪Π2 (K) = PΠ1 (PΠ2 (K)) = P
Π̃1

(PΠ2 (K)) ⊇ P
Π̃1

(Kα) ⊇ (Kα)β .

Since this is true for every partition Π of [αβ, 1], we make intersect over all such partitions and
conclude that Kαβ ⊇ (Kα)β.

For the proof of the opposite inequality we need to use Proposition 16. Fix some ε > 0. There
exists a partition Π2 of [α, 1] such that PΠ2 (K) ⊆ (1 + ε)Kα. Similarly, there exists a partition Π1

of [β, 1] such that

PΠ1 (PΠ2 (K)) ⊆ (PΠ2 (K))β ⊆ ((1 + ε)Kα)β = (1 + ε)β · (Kα)β .
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On the other hand, Π = αΠ1 ∪Π2 is a partition of [αβ, 1], so

PΠ1 (PΠ2 (K)) = PαΠ1 (PΠ2 (K)) = PΠ(K) ⊇ Kαβ.

Combining the last two inclusions we see that Kαβ ⊆ (1 + ε)β (Kα)β. Since this is true for every
ε > 0 we have Kαβ ⊆ (Kα)β and the proof is complete.

The same method can be used to define f(K) for other operator monotone functions f . As an
important example, the function u 7→ log u is operator monotone, which means that one can define
logK using an ellipsoidal envelope. Notice however that the matrix log u is positive definite if and
only if u < Id, where Id is the identity map. It follows that we may define f (E) only for ellipsoids
E such that E ⊇ Bn

2 . Hence the natural domain of the logarithm is all convex bodies K ∈ Kns such
that K ⊇ Bn

2 . Unfortunately this definition of a logarithm does not seem to interact well with
powers, in the sense that usually we do not have

log (Kα) = α logK

like we have for ellipsoids. We think that some modifications to the definitions may fix this problem.

In conclusion, we illustrated in this article just the very first steps in the development of an ”irra-
tional” theory of convexity. A lot of novel questions appear naturally in every step of this study.
In [14] we explicitly formulated some of them. We also did not discuss in this note any problems
involving the interplay between these new constructions and geometric (say, volume) inequalities.
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