A LETTER: THE LOG-BRUNN-MINKOWSKI INEQUALITY FOR COMPLEX BODIES
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We will use the following terminology: A real body K C R™ is the unit ball of a norm |-|| on R”, i.e. a
convex, origin symmetric, compact set with non-empty interior. Similarly, a complex body K C C™ is the
unit ball of a norm ||| on C". By identifying C" ~ R?" we see that every complex body is also a real body,
but not vice versa. In fact, a complex body K C C™ is a real body which is also symmetric with respect to
complex rotations, i.e. if z € K implies that ez € K for all § € R.

For a real body K, the support function of K is defined as h (0) = ||0||% = sup,cx (z,60). Given two such
bodies K and T and a number 0 < A < 1, we define the logarithmic mean of K and T by

LA(K,T)={z € R": (z,0) < hg(0)' *hr()* for all € R"},
where (-,-) denotes the standard Euclidean inner product.
The log-Brunn-Minkowski inequality states that |L(K,T)| > |K|'~*|T|", where |-| denotes the (Lebesgue)
volume. It was conjectured by Boroczky, Lutwak, Yang and Zhang ([2]), who proved it for K,T C R2.

Saroglou proved ([6]) that the inequality holds when K and T are n-dimensional real bodies which are
unconditional with respect to the same basis.

The goal of this note is to explain why the log-Brunn-Minkowski inequality holds for complex bodies:
Theorem 1. For complex bodies K,T C C" and 0 < A < 1 we have |Lx(K,T)| > |K|'"™* |T|.

Theorem 1 will follow from a result of Cordero-Erausquin ([3]). In his work, Cordero-Erausquin proved
a generalization of the Blaschke-Santalé inequality in the complex case. Specifically, he proved that for
complex bodies K,T C C" we have

(%) |[KNT||K°NT| < |B3"NT|,

where K° is the polar body to K and B%” C C" is the unit Euclidean ball. As a side note we remark that
proving the same inequality for general real bodies is an open problem — see [4] for a partial result and a
short discussion.

Cordero-Erausquin’s proved the inequality () as a corollary of a general theorem about complex interpolation
- see Theorem 3 below. The main point of this letter is the observation that the same general theorem also
implies Theorem 1. This was apparently known to Cordero-Erausquin himself, but not to other researchers
in the community who haven’t studied the complex case carefully. Theorem 1 may be a strong indication
that the log-Brunn-Minkowski conjecture is true in general. Alternatively, it may indicate the existence of a
rich theory of geometric inequalities in the complex case.

Let us briefly recall the definition of complex interpolation. We will give the construction for the finite-
dimensional case, following the presentation of [3], and refer the reader to [1] for a more detailed account.
Set S={z€C: 0<Rez < 1}, and define

f is bounded and continuous on S and analytic on S

F=l:52C" hthat 1 it = 1 14it) =0
such that Bp S0 = T 0+ =

Given two norms |[|-||, and ||-||; on C", we define a norm on F by

nmf=mm{wpfwnmwmuu+mu}
teR teR
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Finally, for A € [0,1], we define the interpolated norm ||-||, by
el =it {|fllz: feF, fQA) =z}

It is not hard to see that for A = 0,1 we recover the original norms ||-||,,[|||;- The only other result we will
need from the standard theory of complex interpolation is the following:

Proposition 2. Let |||, ||-||; be norms on C™ and let ||-||, be the interpolated norms. Then

Il < (1) (=)

for every z € C™.

This inequality, with its simple proof, may be found for example in [5] as equation (7.26)".
If K is the unit ball of |||, and 7" is the unit ball of ||-||; we will write C\(K,T) for the unit ball of ||-[|,.

Proposition 2 implies that ke, (x,1)(2) < hi(2)' " hy(2)* for all z € C", and hence C\(K,T) C Ly(K,T).
The main theorem of [3] is the following:

Theorem 3. The function A — |C\(K,T)| is log-concave on [0,1].

It is now easy to deduce Theorem 1, as

|LA(K,T)| > |CA(K, T)| > |Co(K, T)[' - |CL (K, T = | K| T
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