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Abstract

Elementary proofs of sharp isoperimetric inequalities on a normed space (Rn, ‖·‖)
equipped with a measure µ = w(x)dx so that wp is homogeneous are provided, along with
a characterization of the corresponding equality cases. When p ∈ (0,∞] and in addition
wp is assumed concave, the result is an immediate corollary of the Borell–Brascamp–Lieb
extension of the classical Brunn–Minkowski inequality, providing a new elementary proof
of a recent result of Cabré–Ros Oton–Serra. When p ∈ (−1/n, 0), the relevant property
turns out to be a novel “q–complemented Brunn–Minkowski” inequality:

∀λ ∈ (0, 1) ∀ Borel sets A,B ⊂ Rn such that µ(Rn \A), µ(Rn \B) <∞ ,

µ∗(Rn \ (λA+ (1− λ)B)) ≤ (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)
1/q

,

which we show is always satisfied by µ when wp is homogeneous with 1
q = 1

p + n; in par-

ticular, this is satisfied by the Lebesgue measure with q = 1/n. This gives rise to a new
class of measures, which are “complemented” analogues of the class of convex measures
introduced by Borell, but which have vastly different properties. The resulting isoperi-
metric inequality and characterization of isoperimetric minimizers extends beyond the re-
cent results of Cañete–Rosales and Howe. The isoperimetric and Brunn-Minkowski type
inequalities also extend to the non-homogeneous setting, under a certain log-convexity
assumption on the density. Finally, we obtain functional, Sobolev and Nash-type versions
of the studied inequalities.

1 Introduction

The well-known intimate relation between the classical isoperimetric inequality on Euclidean
space on one hand, and the Brunn–Minkowski inequality for the volume of algebraic sums
of sets on the other, dates back to the 19th century (see e.g. [17, 27] and the references
therein). The contribution we wish to put forth in this work is that more general isoperimetric
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inequalities are equally intimately related to more general Brunn–Minkowski type inequalities,
some of which have already been discovered, notably by Prékopa, Leindler, Borell, Brascamp
and Lieb, and some of which seem new and previously unnoticed. It is the main goal of
this work to put these “complemented Brunn–Minkowski” inequalities into light, along with
their associated class of “complemented-concave” measures, which are the counterparts to
the class of convex measures introduced by Borell in [6] (cf. Brascamp–Lieb [7]). We begin
with some definitions and background.

Let (Ω, d) denote a separable metric space, and let µ denote a Borel measure on (Ω, d).
The outer and inner Minkowski boundary measures µ+

d (A) and µ−d (A) (respectively) of a
Borel set A ⊂ Ω are defined as:

µ+
d (A) := lim inf

ε→0

µ(Adε \A)

ε
, µ−d (A) := µ+

d (Ω \A) = lim inf
ε→0

µ((Ω \A)dε \ (Ω \A))

ε
,

where Adε := {x ∈ Ω; ∃y ∈ A d(x, y) < ε} is the open ε-extension of A. The isoperimetric
problem on (Ω, d, µ) consists of finding a sharp lower bound on µ+

d (A) or µ−d (A) as a function
of µ(A). Sets of given measure on which this lower bound is attained are called isoperimetric
minimizers.

On a linear space, Minkowski addition is defined as A + B := {a+ b ; a ∈ A , b ∈ B},
and homothetic scaling is denoted by tA = {ta ; a ∈ A}, t ∈ R. When the metric d is given
by a norm ‖·‖K having open unit-ball K, note that Adε = A + εK; this connects the study
of volumetric properties of Minkowski addition to the isoperimetric problem in the limiting
regime when ε→ 0. Consequently, we may extend our setup beyond the traditional case when
d and ‖·‖ are genuine metrics and norms, respectively. For instance, throughout this work we
dispense with the symmetry requirement in the terms “metric”, “norm” and “semi-norm”.
In other words, we do not require that a metric d satisfy d(x, y) = d(y, x), and only require
that our norms and semi-norms be positively homogeneous: ‖λx‖ = λ ‖x‖ for all λ ≥ 0.
Furthermore, we may consider the isoperimetric problem when d is given by a semi-norm,
or more generally, when it is induced by an arbitrary open set B containing the origin, by
defining Adε := A + εB and thus accordingly the outer and inner boundary measures, which
we then denote by µ+

B and µ−B, respectively.

The starting point of our investigation in this work is the following:

Theorem 1.1 (Borell [6], Brascamp–Lieb [7]). Let p ∈ [−1/n,∞] and q ∈ [−∞, 1/n] satisfy:

1

q
=

1

p
+ n . (1.1)

Let w : Rn → R+ denote a measurable function which is p-concave, namely:

∀x, y ∈ Rn w(x)w(y) > 0 ∀λ ∈ (0, 1) ⇒

w(λx+ (1− λ)y) ≥ (λw(x)p + (1− λ)w(y)p)1/p .
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Then the measure µ = w(x)dx is q-concave, namely:

∀A,B ⊂ Rn µ(A)µ(B) > 0 ∀λ ∈ (0, 1) ⇒

µ(λA+ (1− λ)B) ≥ (λµ(A)q + (1− λ)µ(B)q)1/q .

Theorem 1.1 is a generalization of the classical Brunn–Minkowski (p =∞ and w constant)
and Prekopá–Leindler (p = 0) Theorems, where in the above `p and `q averages are interpreted
appropriately - see Section 2. When p > 0 then w is p-concave iff wp is concave on its convex
support; the case p = ∞ corresponds to a constant density supported on a convex set; w is
0-concave iff logw : Rn → R ∪ {−∞} is concave ; and when p < 0 then w is p-concave iff
wp : Rn → R ∪ {+∞} is convex. For further information, properties and generalizations of
these well-studied densities and measures, which Borell dubs “convex measures”, we refer to
e.g. [6, 5, 7, 3, 1] and to Section 2. Throughout this work, we will assume that p and q are
related by (1.1).

1.1 Homogeneous Densities - Positive Exponent

Our first elementary observation is that when the density w is in addition p-homogeneous,
namely:

w(λx)p = λw(x)p ∀λ > 0 ,

Theorem 1.1 immediately yields the following corollary (the straightforward proof is deferred
to Section 2):

Corollary 1.2. Let µ = w(x)dx, and assume that w : Rn → R+ is p-concave and p-
homogeneous with p ∈ (0,∞]. Let ‖·‖K denote an arbitrary semi-norm on Rn with open unit
ball K. Then the following isoperimetric inequality holds:

µ+
‖·‖K

(A) ≥ 1

q
µ(K)qµ(A)1−q with

1

q
=

1

p
+ n , (1.2)

for any Borel set A with µ(A) < ∞, and with equality for A = tK, t > 0. In other words,
homothetic copies of K are isoperimetric minimizers for (Rn, ‖·‖K , µ).

Note that in such a case, µ is necessarily supported in a convex cone. The case that
p = ∞, namely that µ has constant density in a convex cone Σ, with K being a Euclidean
ball, is due to Lions and Pacella [21], who generalized the classical isoperimetric inequality
for the Lebesgue measure. Under some additional technical assumptions on the density w,
the case of arbitrary p > 0 and norm ‖·‖K is due to Cabré, Ros-Oton and Serra [11, 12], who
used a PDE approach for their proof; under some stronger technical assumptions and when
K is the Euclidean ball, this has also been subsequently verified by Cañete and Rosales [10].
As described in [12], one of the present authors has noted that the case when p = 1/N and
N is an integer may be reduced to the p =∞ case. The observation that the Lions–Pacella
result follows from the Brunn–Minkowski Theorem was also noted by Barthe and Cordero–
Erausquin (private communication), and the generalization to the Cabré-et-al setting was
also noted independently of our work by Nguyen (private communication).
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Using a result of Dubuc [14] characterizing the equality cases in Theorem 1.1, it is not
difficult to show that up to sets of zero µ-measure, homothetic (and possibly translated)
copies of K are the unique convex isoperimetric minimizers in Corollary 1.2, see Section
2 for more details. The uniqueness of general isoperimetric minimizers in the Lions–Pacella
scenario in the case that Σ\{0} is smooth was obtained by Lions and Pacella themselves [21],
and using a different approach by Ritoré and Rosales [26]; the smoothness assumption has
been recently removed by Figalli and Indrei [16]. In the case that K is a Euclidean ball and
under some additional technical smoothness assumptions on the density w and the cone Σ, the
uniqueness of smooth compact stable hypersurfaces in the more general setting of Corollary
1.2 has been recently obtained by Cañete and Rosales [9], extending the stability results
from [26]; however, this does not directly yield the uniqueness of minimizing hypersurfaces
since a-priori these may not be smooth nor compact - these issues are to be resolved in
[10]. Furthermore, the smoothness conditions imposed in [9, 10] prohibit using densities w
which are invariant under translations in a certain direction, and consequently Cañete and
Rosales do not obtain any translations in their characterization of minimizers, even though in
general translations might be necessary (see Remark 2.18). We refer to [11, 12, 9] for further
information on the previously known results when p ∈ (0,∞].

1.2 Homogeneous Densities - Negative Exponent

In this work, we will be more interested in the case when q < 0 (equivalently p ∈ (−1/n, 0)).
Observe that in this case, the right-hand-side of (1.2) becomes meaningless; this is not sur-
prising, since in that range of values, a p-homogeneous density w is non-integrable at the
origin, and so homothetic copies of K must have infinite µ-measure, and thus cannot serve as
isoperimetric minimizers. However, it is still plausible to conjecture that their complements,
which have the same (inner) boundary measure yet finite mass, might be the sought-after
minimizers. It turns out that this is indeed the case, and that moreover, the requirement
that w be p-concave is in fact not needed:

Theorem 1.3. Let µ = w(x)dx where w : Rn \ {0} → R+ is a p-homogeneous Borel density
with p ∈ (−1/n, 0). Let ‖·‖K denote an arbitrary semi-norm on Rn with open unit ball K so
that µ(Rn \K) <∞. Then the following isoperimetric inequality holds:

µ−‖·‖K
(C) ≥ −1

q
µ(Rn \K)qµ(C)1−q with

1

q
=

1

p
+ n , (1.3)

for any Borel set C with µ(C) <∞, and with equality for C = Rn\tK, t > 0. In other words,
complements of homothetic copies of K are isoperimetric minimizers for (Rn, ‖·‖K , µ).

In fact, the result remains valid when µ is an arbitrary σ-finite q-homogeneous Borel
measure, satisfying µq(λA) = λµq(A) for all Borel sets A ⊂ Rn and λ > 0. Furthermore, we
show in Section 4 that up to sets of zero µ-measure, complements of homothetic copies of
K are the unique isoperimetric minimizers in Theorem 1.3 (no translations are necessary in
the negatively homogeneous case). When w is in addition assumed p-concave, under some
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additional technical smoothness assumptions on w and the support of µ, and when K is
the Euclidean ball, Theorem 1.3 and the uniqueness of isoperimetric minimizers has been

established by Cañete and Rosales [9, 10]. When w(x) = |x|
1
p and K is the Euclidean ball,

Theorem 1.3 was previously obtained by Dı́az, Harman, Howe and Thompson [13]. A more
general result has been established by Howe [19], see Theorem 1.4 below.

The proof of Theorem 1.3 is completely analogous to the one of Corollary 1.2, once it has
been shown that any homogeneous measure µ as above is in fact complemented-concave:

Definition. A Borel measure µ on Rn is said to be q-complemented concave (“q-CC”), and
is said to satisfy a q-complemented Brunn–Minkowski inequality (“q-CBM”), q ∈ [−∞,+∞],
if:

∀λ ∈ (0, 1) ∀ Borel sets A,B ⊂ Rn such that µ(Rn \A), µ(Rn \B) <∞ ,

µ∗(Rn \ (λA+ (1− λ)B)) ≤ (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)1/q . (1.4)

Here µ∗ denotes the inner measure induced by µ.

The complemented Brunn–Minkowski inequality considered above seems new, and con-
stitutes the main impetus for this work. It is a-priori not even clear that there are non-trivial
examples of q-complemented concave measures (at least for q < ∞), but it turns out that
when p ∈ (−∞,− 1

n−1 ] ∪ (− 1
n , 0) ∪ (0,∞] (equivalently q ≤ 1 and q 6= 0), any p-homogeneous

Borel density (and more generally, σ-finite q-homogeneous Borel measure) gives rise to such
a measure. In particular, (1.4) holds with q = 1/n for µ being the Lebesgue measure re-
stricted to an arbitrary measurable cone. Various additional properties satisfied by the class
of q-CC measures are studied in Section 3. One crucial feature of the q-CC class is that
it is a convex cone when q ≤ 1, much in contrast with the Borell–Brascamp–Lieb class of
q-concave measures; other dissimilarities are also considered. In particular, we show that
when q <∞, any non-zero q-CC measure must have infinite mass, and that contrary to the
Borell–Brascamp–Lieb Theorem 1.1, this class does not admit any local characterization.

1.3 Non-Homogeneous Log-Convex Densities

In Section 5, we go beyond the homogeneous setting, and obtain the following generalization
of Theorem 1.3 (in fact, we obtain a more general version):

Theorem 1.4. Let ‖·‖ denote a norm on Rn with open unit-ball K. Let w0 : Rn → R+

denote a 1-homogeneous measurable function so that
∫
K w0(x)dx <∞. Let ϕ : (0,∞)→ R+

denote a non-increasing function, non-integrable at the origin, integrable at infinity, and so
that logϕ : (0,∞)→ [−∞,∞) is convex. Set:

µ = w0(x/ ‖x‖K) ‖x‖1−nK ϕ(‖x‖K)dx .

Then, denoting Φ(t) :=
∫∞
t ϕ(s)ds and I := ϕ ◦ Φ−1, the following isoperimetric inequality

holds:
µ−‖·‖K

(C) ≥ I(µ(C))
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for any Borel set C ⊂ Rn with µ(C) < ∞, and with equality for C = Rn \ tK, t > 0.
In other words, complements of homothetic copies of K are isoperimetric minimizers for
(Rn, ‖·‖K , µ).

Furthermore, we show in Section 5 that when logϕ is strictly convex or when the support
of µ is convex, complements of homothetic copies of K are, up to sets of zero µ-measure,
the unique isoperimetric minimizers in Theorem 1.4 (among all sets whose complements have
finite Lebesgue measure). Theorem 1.4 and the corresponding uniqueness of isoperimetric
minimizers has been explicitly obtained by Howe [19] for the case when K is the Euclidean
ball and w0 and ϕ are continuous and positive on Sn−1 and (0,∞), respectively, by using a
warped-product representation of the space; see [19, Section 3] for additional isoperimetric
results in more general situations. As Howe points out, his results and methods should apply
for arbitrary star-shaped smooth compact domains K (in the spirit of our more general
formulation in Section 5), but even in that case, it seems that Howe’s Riemannian warped-
product boundary measure does not coincide with our “Finslerian” notion, and there are
various technicalities which should be taken care of, such as using the convexity of K where
needed and defining the corresponding measure µ correctly; furthermore, it is not clear how
to extend Howe’s method to the case when w0 is no longer assumed continuous or positive.
Contrary to the PDE and Geometric Measure Theory approaches of Cabré–Ros-Oton–Serra
and Cañete–Rosales mentioned above, Howe’s approach is based on the convexity of the
function I above and in that sense is essentially identical to our own approach. However, our
emphasis is on the associated Brunn–Minkowski type inequality satisfied by measures µ as
above:

µ(Rn \ (A+ tK)) ≤ Φ(Φ−1(µ(Rn \A)) + tΦ−1(µ(Rn \K))) ,

for all t ≥ 0 and any Borel set A so that µ(Rn \A) <∞.

1.4 Functional Versions

All of the isoperimetric inequalities formulated above also have global Brunn–Minkowski
type versions, which are obtained in the corresponding sections. To complete the picture, we
formulate and prove in Section 6 various additional functional versions of these inequalities.
In particular, we obtain seemingly new Sobolev and Nash-type inequalities with respect to
locally-integrable p-homogeneous densities on Rn \ {0} for p ∈ (−1/n, 0). For instance, we
show that when µ is a measure on Rn having such a density, then for any locally Lipschitz
function f : Rn → R with f(0) = 0 and any norm ‖·‖ on Rn, we have:

‖f‖L1(µ) ≤ C2(

∫
‖∇f‖∗ dµ)α ‖f‖1−αL∞(µ) ,

and for any β ∈ (0, α): ∫
‖∇f‖∗ dµ ≥ C1

(
α− β
α

)1/β

‖f‖Lβ(µ) ,
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where:
1

q
=

1

p
+ n , α :=

1

1− q
, C1 := −1

q
µ({‖x‖ ≥ 1})q , C2 := C−α1 .

Remark 1.5. Most of the previously obtained isoperimetric results mentioned above employ
the notion of weighted (De Giorgi) perimeter instead of our preferred notion of (Minkowski’s)
boundary measure (see e.g. [8, 25] for background and definitions). One may show (see [8,
Theorem 14.2.1]) that the former notion is always a-priori stronger than the latter; however,
for sufficiently regular sets, the two notions always coincide, and since isoperimetric mini-
mizers are typically ensured to be “sufficiently regular” by the powerful results of Geometric
Measure Theory (see [25]), a-posteriori the particular definition used makes no difference in
many situations. Our preference to work with Minkowski’s boundary measure is due to its
intimate connection to Brunn–Minkowski-type inequalities, which are really the protagonists
of this work; furthermore, it allows us to treat arbitrary Borel sets and measures, without
any assumptions on smoothness.

Acknowledgement. We thank Franck Barthe, Xavier Cabré, Antonio Cañete, Dario
Cordero-Erausquin, Sean Howe, Erwin Lutwak, Frank Morgan and César Rosales for helpful
correspondence during the preparation of this work. We also thank the referee for carefully
reading the manuscript and for his / her meticulous comments.

2 Positively Homogeneous and Concave Measures

2.1 p-concave densities and q-concave measures

We start with the following definitions. Let E be an affine vector space.

Definition 2.1. A measurable function w : E → R+ is called p-concave (p ∈ [−∞,∞]) if:

∀x, y ∈ E so that w(x)w(y) > 0 ,

we have:
∀λ ∈ (0, 1) w(λx+ (1− λ)y) ≥ (λw(x)p + (1− λ)w(y)p)1/p .

Here and elsewhere the right-hand side is interpreted as max(w(x), w(y)) when p = ∞, as
min(w(x), w(y)) when p = −∞, and as w(x)λw(y)1−λ when p = 0.

Definition 2.2. A Borel measure µ on E is called q-concave (q ∈ [−∞,+∞]) if:

∀ Borel subsets A,B ⊂ E so that µ(A)µ(B) > 0 ,

we have:
∀λ ∈ (0, 1) µ(λA+ (1− λ)B) ≥ (λµ(A)q + (1− λ)µ(B)q)1/q . (2.1)

The cases q ∈ {−∞, 0,∞} are interpreted as above.
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Remark 2.3. These definitions appear implicitly in the work of Brascamp and Lieb [7] and
explicitly in the work of Borell [6], who used the name “convex measures” to encompass the
entire class of (−∞)-concave measures. The requirement that the above conditions should
only hold when w(x)w(y) > 0 or µ(A)µ(B) > 0 is redundant when p < 0 or q < 0, respec-
tively, but is otherwise crucial. The measurability of λA+ (1− λ)B is addressed in Remark
3.2.

The starting point of our investigation in this work is the following:

Theorem 2.4. Let p ∈ [−1/n,∞] and q ∈ [−∞, 1/n] satisfy:

1

q
=

1

p
+ n . (2.2)

(1) (Borell [6], Brascamp–Lieb [7]). If w : Rn → R+ is a p-concave function, then the
measure µ = w(x)dx is q-concave.

(2) (Borell [6, Theorem 3.1]). Conversely, if µ is a q-concave measure on Rm, then µ is
supported on an n-dimensional affine subspace E, and has a density w with respect to
the Lebesgue measure on E which is p-concave.

Remark 2.5. As already mentioned in the Introduction, the first part of the theorem is
a generalization of the classical Brunn–Minkowski (p = ∞ and w constant) and Prekopá–
Leindler (p = 0) Theorems (see e.g. [17]). The restriction on the corresponding ranges of
p and q above is due to the fact that there are no non-zero absolutely continuous q-concave
measures when q > 1/n [6]. By Jensen’s inequality, we immediately see that the class of
p-concave densities (q-concave measures) on Rn becomes larger as p (q) decreases from +∞
to −1/n (1/n to −∞).

We will assume throughout the rest of this section that p and q are related by (2.2). For
convenience, we note that (−∞,−1/n), (−1/n, 0) and (0,∞) in the p-domain get mapped to
(1/n,∞), (−∞, 0) and (0, 1/n) in the q-domain, respectively.

2.2 p-homogeneous densities and q-homogeneous measures

We will employ throughout this work the following notation. We denote by B(x, r) the closed
Euclidean ball centered at x ∈ Rn and having radius r > 0. Furthermore:

Definition 2.6. A measurable function w : Rn → R+ is called p-homogeneous, p ∈ (−∞,∞]\
{0}, if:

∀x ∈ Rn ∀λ > 0 w(λx)p = λw(x)p ,

with the interpretation when p =∞ that w(λx) = w(x) for all λ > 0, i.e. that w is constant
along rays from the origin.
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Definition 2.7. A Borel measure µ on Rn is called q-homogeneous, q ∈ (−∞,∞] \ {0}, if:

∀ Borel subset A ⊂ Rn ∀λ > 0 µ(λA)q = λµ(A)q ,

with the interpretation when q =∞ that µ(λA) = µ(A) for all λ > 0.

Notice that our p-homogeneous functions are often called 1/p-homogeneous in the litera-
ture, and similarly for our q-homogeneous measures. Our convention will be more convenient
in the sequel.

The following lemma is a trivial analogue of Theorem 2.4 for the class of homogeneous
densities and measures:

Lemma 2.8. Let p ∈ (−∞,∞] \ {0} and q ∈ (−∞,∞] \ {0} be related by (2.2).

(1) Let w : Rn → R+ denote a p-homogeneous function. Then the measure µ = w(x)dx is
q-homogeneous.

(2) Conversely, if µ = w(x)dx is a q-homogeneous measure on Rn, then w coincides almost-
everywhere with a p-homogeneous function.

Sketch of proof. (1)

µ(λA) =

∫
λA
w(x)dx = λn

∫
A
w(λy)dy = λn+1/p

∫
A
w(y)dy = λ1/qµ(A) .

(2) This follows similarly by testing µ’s homogeneity property on Euclidean balls of the
form B(x, ε) with ε→ 0 and applying Lebesgue’s differentiation theorem.

2.3 q-concave and q-homogeneous measures with q > 0

The following elementary observation encapsulates the usefulness of combining the two pre-
viously described properties:

Proposition 2.9. Let µ denote a q-concave and q-homogeneous measure on Rn with q ∈
(0, 1/n]. Let ‖·‖K denote an arbitrary semi-norm on Rn with open unit ball K. Then the
following isoperimetric inequality holds:

µ+
‖·‖K

(A) ≥ 1

q
µ(K)qµ(A)1−q , (2.3)

for any Borel set A with µ(A) < ∞, and with equality for A = tK, t > 0. In other words,
homothetic copies of K are isoperimetric minimizers for (Rn, ‖·‖K , µ).

As an immediate corollary of the Borell–Brascamp–Lieb Theorem 2.4 and Lemma 2.8, we
obtain Corollary 1.2 from the Introduction, which we state here again for convenience. See
the remarks and references following Corollary 1.2 for previously known results.
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Corollary 2.10. Let µ = w(x)dx, and assume that w : Rn → R+ is p-concave and p-
homogeneous with p ∈ (0,∞]. Then homothetic copies of K are isoperimetric minimizers for
(Rn, ‖·‖K , µ), and (2.3) holds with 1

q = 1
p + n.

Proof of Proposition 2.9. We may assume that µ(A)µ(K) > 0 since otherwise there is nothing
to prove. By scaling the q-concavity property (2.1) and employing the q-homogeneity, we
obtain for any Borel sets A,B ⊂ Rn with µ(A)µ(B) > 0:

µ(A+ tB) ≥ (µ(A)q + tµ(B)q)1/q ∀t > 0 .

Applying this to B = K and using that µ(A) <∞, we calculate the boundary measure of A:

µ+
‖·‖K

(A) = lim inf
ε→0

µ((A+ εK) \A)

ε
= lim inf

ε→0

µ(A+ εK)− µ(A)

ε

≥ lim inf
ε→0

(µ(A)q + εµ(K)q)1/q − µ(A)

ε
=

1

q
µ(A)1−qµ(K)q ,

with equality for A = K, since K + εK = (1 + ε)K when K is convex. By scaling, we see
that equality holds for all positive homothetic copies of K.

Remark 2.11. Note that the convexity of K was only used to assert that homothetic copies
of K are isoperimetric minimizers. The inequality (2.3) remains valid for arbitrary Borel sets
K, but when K is convex, this inequality acquires isoperimetric content on an appropriate
metric-measure space (in fact, it is only a non-symmetric semi-metric).

Remark 2.12. Inspecting the proof, note that we only used one-sided homogeneity - we just
need that:

∀ε ∈ [0, 1] µ(εA)q ≤ εµ(A)q ,

which we have if:
∀ε ∈ [0, 1] w(εx)p ≤ εw(x)p .

However, the concavity of wp implies that:

∀ε ∈ [0, 1] w(εx)p − w(0)p ≥ ε(w(x)p − w(0)p) ,

so this is only consistent if w(0) = 0 and hence wp must be homogeneous.

2.4 Generalizations and Characterization of Equality Cases

In order to characterize the equality case in (2.3), we will need part (2) of the following
theorem. Part (1) generalizes part (1) of Theorem 2.4.

Theorem 2.13. Let p ∈ [−1/n,∞], λ ∈ (0, 1) and let f, g, h : Rn → R+ denote three
integrable functions so that:

h(λx+ (1− λ)y) ≥ (λf(x)p + (1− λ)g(y)p)1/p for almost all (x, y) ∈ Rn × Rn .

Then:
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(1) (Borell [6], Brascamp–Lieb [7])∫
h ≥

(
λ(

∫
f)q + (1− λ)(

∫
g)q
)1/q

, (2.4)

with 1
q = 1

p + n.

(2) (Dubuc [14, Theorem 12]) If
∫
f,
∫
g,
∫
h > 0 and we have equality in (2.4), then there

exist a scalar m0 > 0 and a vector b0 ∈ Rn so that:

f(x/λ)

λn
∫
f

=
mn

0g((m0x+ b0)/(1− λ))

(1− λ)n
∫
g

=
(m0 + 1)nh((m0 + 1)x+ b0)∫

h
,

for almost all x ∈ Rn.

Remark 2.14. An even more general formulation was obtained by Borell and Dubuc,
whereby the `p-norm in the assumption is replaced by an arbitrary 1-homogeneous func-
tion P : R2

+ → R+, in which case the `q-norm in the conclusion should be replaced by:

Pn(u, v) := inf
t∈(0,1)

P (ut−n, v(1− t)−n) , (u, v) ∈ R2
+ .

In addition, the following result of Dubuc, which is a particular case of [14, Theorem 6],
will be very useful for characterizing cases of equality in the sequel:

Theorem 2.15 (Dubuc). Let C1, C2 ⊂ Rn be two Borel sets, and assume that (αC1 + (1 −
α)C2) \ (C1 ∩ C2) is a null-set. Then necessarily C1 and C2 coincide up to null sets with a
common open convex set C3.

Corollary 2.16. Let w : Rn → R+ denote a p-concave density, p ∈ [−1/n,∞], set 1
q = 1

p +n,
and let µ = w(x)dx be the corresponding q-concave measure. Assume that:

µ(λA+ (1− λ)B) = (λµ(A)q + (1− λ)µ(B)q)1/q ,

for two Borel sets A,B ⊂ Rn with µ(A), µ(B) ∈ (0,∞) and λ ∈ (0, 1). Then there exist m > 0
and b ∈ Rn so that B coincides with mA+ b up to zero µ-measure, and w(mx+ b) = cw(x)
for almost all x ∈ A and some c > 0.
Furthermore, if w is p-homogeneous and b = 0, then up to null-sets, A ∩ Σ and B ∩ Σ must
be convex, where Σ is the convex cone on which µ is supported.

Proof. Use f(x) = 1A(x)w(x), g(y) = 1B(y)w(y) and h(z) = 1λA+(1−λ)B(z)w(z) in Theorem

2.13 (2), and set m = λ
1−λm0 and b = 1

1−λb0.
For the second part, denote A′ := mA, and observe by homogeneity that:

µ(λ′A′+(1−λ′)B) =
(
λ′µ(A′)q + (1− λ′)µ(B)q

)1/q
= µ(A′) = µ(B) = µ(A′∩B) , λ′ :=

λ/m

λ/m+ (1− λ)
.

11



In particular, (λ′A′ + (1 − λ′)B) ∩ Σ coincides with A′ ∩ B ∩ Σ up to a null-set. Since Σ is
convex:

(λ′A′ + (1− λ′)B) ∩ Σ ⊃ λ′(A′ ∩ Σ) + (1− λ′)(B ∩ Σ) ⊃ A′ ∩B ∩ Σ ,

and so λ′(A′ ∩ Σ) + (1 − λ′)(B ∩ Σ) coincides with A′ ∩ B ∩ Σ up to a null-set. Invoking
Theorem 2.15, it follows that A′ ∩ Σ and B ∩ Σ must be convex up to null-sets, and the
assertion follows.

The equality case on the infinitesimal level requires more justification. The surprising
idea below, which may be traced to Bonnesen (see [4, Section 49]), is to reduce the problem
to the equality case in the q-Brunn–Minkowski inequality.

Corollary 2.17. Let µ = w(x)dx, and assume that w : Rn → R+ is p-concave and p-
homogeneous with p ∈ (0,∞]. Let A,B ⊂ Rn denote two convex sets1 with µ(A), µ(B) ∈
(0,∞). Assume that:

µ+
B(A) =

1

q
µ(B)qµ(A)1−q ,

1

q
=

1

p
+ n .

Then A coincides with mB + b up to zero µ-measure, for some m > 0 and b ∈ Rn, and
w(mx+ b) = cw(x) for almost all x ∈ B and some c > 0.

Proof. Set:

Ψ(t) := µ((1− t)A+ tB)q = (1− t)µ
(
A+

t

1− t
B

)q
, t ∈ [0, 1] ,

and observe that Ψ is concave by Theorem 2.4 and the fact that λC + (1− λ)C = C for any
convex C and λ ∈ [0, 1]. Consequently, its right derivative at 0 exists (possibly equaling +∞)
and we have:

µ(B)q − µ(A)q = Ψ(1)−Ψ(0) ≤ Ψ′(0) = −µ(A)q + qµ(A)q−1µ+
B(A) ,

which yields the isoperimetric inequality (2.3). Now assume we have equality in the isoperi-
metric inequality - this means that Ψ′(0) = Ψ(1)−Ψ(0), and consequently Ψ must be affine.
In particular:

µ(
1

2
A+

1

2
B)q = Ψ(1/2) =

1

2
Ψ(0) +

1

2
Ψ(1) =

1

2
µ(A)q +

1

2
µ(B)q .

The assertion now follows from Corollary 2.16.

Remark 2.18. Clearly, the example of the Lebesgue measure on Rn shows that one cannot
dispense with translations in Corollary 2.16 and Corollary 2.17 when p =∞. To see this for

p ∈ (0,∞), consider w(x1, . . . , xn) = (xn)
1/p
+ , which is translation invariant in the first n− 1

coordinate directions.
1In the published version, A and B were erroneously assumed to only be Borel sets
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3 q-Complemented Concave measures: definitions and prop-
erties

Definition 3.1. A Borel measure µ on Rn is said to be q-complemented concave (“q-
CC”), and is said to satisfy a q-complemented Brunn–Minkowski inequality (“q-CBM”),
q ∈ [−∞,+∞], if:

∀λ ∈ (0, 1) ∀ Borel sets A,B ⊂ Rn such that µ(Rn \A), µ(Rn \B) <∞ ,

µ∗(Rn \ (λA+ (1− λ)B)) ≤ (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)1/q . (3.1)

Here µ∗ denotes the inner measure induced by µ, and we employ the usual convention for the
cases q ∈ {−∞, 0,∞}. The class of all q-CBM measures on Rn is denoted by Cq,n, and we
set Cq := ∪n∈NCq,n.

Remark 3.2. Note that whenA andB are Borel sets, their Minkowski sum need not be Borel;
however, it is always analytic and hence universally measurable [20]. However, Suslin showed
that the complement of an analytic set is not analytic, unless the set is Borel. Consequently,
we are forced to use the inner measure in our formulation above, a technical point which was
not needed in Definition 2.2.

Remark 3.3. The fact that we do not require inequality (3.1) to hold when µ(Rn \A) =∞
or µ(Rn \B) =∞ is not important when q ≥ 0, but becomes crucial when q < 0. This is the
analogue of the assumption µ(A)µ(B) > 0 in the definition of q-concave measures. Indeed, if
µ is non-integrable at the origin, and if B contains the origin while A and λA+ (1− λ)B do
not, then (3.1) could never hold, since the right-hand side is finite while the left-hand side is
not.

Our motivation for the above definition stems from the following immediate analogue of
Proposition 2.9:

Proposition 3.4. Let µ denote a q-CC and q-homogeneous measure on Rn, with q < 0. Let
‖·‖K denote an arbitrary semi-norm on Rn with open unit ball K so that µ(Rn \K) < ∞.
Then the following isoperimetric inequality holds:

µ−‖·‖K
(C) ≥ −1

q
µ(Rn \K)qµ(C)1−q ,

for any Borel set C with µ(C) <∞, and with equality for C = Rn\tK, t > 0. In other words,
complements of homothetic copies of K are isoperimetric minimizers for (Rn, ‖·‖K , µ).

Proof. As in the proof of Proposition 2.9, we obtain by scaling and homogeneity that:

µ∗(Rn \ (A+ tB)) ≤ (µ(Rn \A)q + tµ(Rn \B)q)1/q ,
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for all Borel sets A and B so that µ(Rn \ A), µ(Rn \ B) < ∞. When B is open then so is
A+ tB, so there is no need to use the inner measure. Let C be a Borel set with µ(C) <∞,
and set A := Rn \ C. Then:

µ−‖·‖K
(C) = lim inf

ε→0

µ((A+ εK) \A)

ε
= lim inf

ε→0

µ(Rn \A)− µ(Rn \ (A+ εK))

ε

≥ lim inf
ε→0

µ(C)− (µ(C)q + εµ(Rn \K)q)1/q

ε
= −1

q
µ(Rn \K)qµ(C)1−q ,

with equality for C = Rn \K, since A + εK = (1 + ε)K when K is convex. By scaling, we
see that equality holds for complements of all positive homothetic copies of K.

Remark 3.5. As in Remark 2.11, observe that the convexity of K is not required at all
for the proof of the asserted inequality, but only for asserting equality for complements of
homothetic copies of K.

3.1 Properties

Recall that a sequence of measures {µk} on a common measurable space (Ω,F) is said to
converge strongly to µ (on F) if for any measurable set A ∈ F we have limk→∞ µk(A) = µ(A).
Also, we say that µ is supported in K ∈ F if µ(Ω \K) = 0.

Proposition 3.6.

(1) Cq,n ⊂ Cq′,n for all −∞ ≤ q ≤ q′ ≤ +∞.

(2) Cq,n is closed with respect to (Borel) strong convergence.

(3) Cq,n is a cone, which is in addition convex if q ≤ 1. In fact in the latter case, if for
some measure space (Ω,F) we have µω ∈ Cq,n for every ω ∈ Ω, η is a σ-finite measure
on (Ω,F), and for every Borel set A ⊂ Rn, ω 7→ µω(A) is an F-measurable function,
then the Borel measure µ on Rn given by:

µ(A) :=

∫
Ω
µω(A)dη(ω) ,

satisfies µ ∈ Cq,n.

(4) If T : Rn → Rm is an affine map and µ ∈ Cq,n then T∗(µ) ∈ Cq,m, where T∗(µ) = µ◦T−1

denotes the push-forward of µ by T . In particular Cq is closed under translations and
taking marginals.

(5) Given a Borel measure µ on Rn supported in a Borel set K, it is enough to use Borel
sets A,B ⊂ K when testing whether µ ∈ Cq,n in (3.1).
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(6) If µ ∈ Cq,n, then also µC ∈ Cq,n for any Borel subset C ⊂ Rn, where:

µC(A) :=

{
µ(A) A ∩ C = ∅
+∞ otherwise

. (3.2)

Proof. (1) The first assertion is immediate by Jensen’s inequality.

(2) The second assertion is immediate since given λ ∈ [0, 1] and A,B Borel subsets of Rn,
the definition in (3.1) only depends on the three values of µ(Rn \ A), µ(Rn \ B) and
µ(Rn \C) for any fixed Borel subset C ⊃ (λA+ (1−λ)B)), and so the assertion follows
by the continuity of R2

+ 3 (a, b) → (λaq + (1 − λ)bq)1/q and the definition of strong
convergence.

(3) The cone property is obvious. When q ≤ 1, the cone is in fact convex by the reverse
triangle inequality for non-negative functions in Lq on the two point space {1, 2} with
weights {λ, 1− λ}, a space we denote by Lq(λ, 1 − λ). Indeed, for any fixed λ ∈ (0, 1)
and Borel sets A,B ⊂ Rn such that Rn \A and Rn \B have finite µ-measure (and hence
by Fubini finite µω-measure for η-almost every ω), we have:

µ∗(Rn \ (λA+ (1− λ)B)) ≤
∫

Ω
µω∗ (Rn \ (λA+ (1− λ)B))dη(ω)

≤
∫

Ω
(λµω(Rn \A)q + (1− λ)µω(Rn \B)q)1/q dη(ω) (3.3)

=

∫
Ω
‖(µω(Rn \A), µω(Rn \B))‖Lq(λ,1−λ) dη(ω)

≤
∥∥∥∥(∫

Ω
µω(Rn \A)dη(ω),

∫
Ω
µω(Rn \B)dη(ω)

)∥∥∥∥
Lq(λ,1−λ)

(3.4)

= (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)1/q .

(4) This assertion follows since for an affine map T we have T−1(λA+(1−λ)B) = λT−1(A)+
(1− λ)T−1(B) and T−1(Rm \A) = Rn \ T−1(A).

(5) Let A,B be two Borel subsets of Rn so that µ(Rn \ A), µ(Rn \ B) < ∞, and set
A′ := A∩K and B′ := B ∩K. Since A \A′ and B \B′ have zero µ-measure, it follows
that µ(Rn \ A′) = µ(Rn \ A) < ∞ and µ(Rn \ B′) = µ(Rn \ B) < ∞, and so by the
assumption that (3.1) is satisfied for A′, B′ ⊂ K, we have:

µ∗(Rn \ (λA+ (1− λ)B)) ≤ µ∗(Rn \ (λA′ + (1− λ)B′))

≤
(
λµ(Rn \A′)q + (1− λ)µ(Rn \B′)q

)1/q
= (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)1/q .

(3.5)
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(6) Given two Borel sets A,B ⊂ Rn so that µC(Rn \ A), µC(Rn \ B) < ∞, clearly both
sets must contain C. Consequently, λA + (1 − λ)B also contains C for any λ ∈ [0, 1],
and hence the µC-measures of complements of all sets involved coincide with their
corresponding µ-measures, which by assumption satisfy the q-CBM condition (3.1). It
follows that µC is also q-CC.

Since the zero measure is trivially a q-CC measure for all q ∈ [−∞,∞], we see by the last
assertion of the previous proposition that, for any Borel subset C ⊂ Rn, so is the measure:

µ0
C(A) :=

{
0 A ∩ C = ∅
+∞ otherwise

. (3.6)

By appropriately choosing the set C 6= ∅, it is possible to construct many further examples of
q-CC measures µ having the property that µ(A) =∞ if A ∩ C 6= ∅; see Proposition 3.8 (3).
However, we will consider non σ-finite examples such as (3.6) as having pathological nature,
and defer the construction of non-pathological q-CC measures to the next section.

Several additional interesting properties of q-CC measures pertain to their finiteness and
infiniteness:

Proposition 3.7.

(1) Any non-zero measure µ ∈ Cq,n, q ∈ [−∞,∞), satisfies µ(Rn) =∞.

(2) The subclass of finite measures in C∞,n coincides with the subclass of finite −∞-concave
measures on Rn.

(3) The subclass of infinite −∞-concave measures is a strict subset of the subclass of in-
finite ∞-CC measures.

Proof.

(1) Assume in the contrapositive that µ(Rn) <∞, and hence by rescaling we may assume
that µ is a probability measure. By the first assertion of Proposition 3.6, we know that
µ is q-CC for some q ∈ (0,∞). The following argument mimics the proof of Borell’s
lemma from [5]. Note that by the triangle inequality, for any s > 0 and t > 1:

2

t+ 1
(Rn \B(ts)) +

t− 1

t+ 1
B(s) ⊂ Rn \B(s) ,

where B(r) denotes the (say closed) Euclidean ball of radius r and center at the origin.
The q-CBM property implies that:

µ(B(s)) ≤ µ
(
Rn \

(
2

t+ 1
(Rn \B(ts)) +

t− 1

t+ 1
B(s)

))
≤
(

2

t+ 1
µ(B(ts))q +

t− 1

t+ 1
µ(Rn \B(s))q

)1/q

.
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Since q > 0 and µ is a probability measure, this is equivalent to:

µ(B(ts)) ≥
(
t+ 1

2
µ(B(s))q − t− 1

2
(1− µ(B(s)))q

)1/q

.

Choosing s > 0 large enough so that µ(B(s)) > 1/2, we see that the right-hand side
tends to infinity as t → ∞, in contradiction to our assumption that µ is a probability
measure.

(2) The assertion follows since when µ(Rn) <∞, then the inequality:

µ∗(Rn \ (λA+ (1− λ)B)) ≤ max(µ(Rn \A), µ(Rn \B)) ,

for all Borel subsets A,B ⊂ Rn (we automatically have µ(Rn \ A), µ(Rn \ B) <∞), is
equivalent to:

µ(λA+ (1− λ)B) ≥ min(µ(A), µ(B)) .

Note that there is no need to check whether µ(A)µ(B) > 0, since otherwise the inequal-
ity holds trivially.

(3) To show the asserted inclusion, observe that if µ is a −∞-concave measure, then
by Borell’s characterization in Theorem 2.4, we know that µ is supported on an m-
dimensional affine subspace E of Rn, where it has a density w(x) with respect to the
Lebesgue measure LebE on E which is −1/m-concave. Truncating w(x) by setting
wk(x) := min(w(x), k))1B(x0,k) for some fixed x0 ∈ E, it is easy to check that wk re-
mains −1/m-concave, and hence by Theorem 2.4 µk := wk(x)dLebE(x) is −∞-concave.
Since µk is finite, the second assertion of the current proposition implies that µk is
∞-CC, and since µk tends to µ strongly as k →∞ by monotone convergence, it follows
by the second assertion of Proposition 3.6 that µ is also ∞-CC on E. Proposition 3.6
(5) then implies that µ is ∞-CC on Rn.

To show that the inclusion is strict, set C = {x1, x2} consisting of two distinct points in
Rn (or any other non-convex set for that matter). Now observe that µ0

C defined in (3.6)
is ∞-CC but it is not −∞-concave, as seen by testing (2.1) with A = {x1}, B = {x2}
and λ = 1/2.

The convex cone property described in Proposition 3.6 is on one hand extremely useful,
but at the same time indicates that the class of q-CC measures (q ≤ 1) is very different
from the one of Borell–Brascamp–Lieb p-concave measures, which certainly do not share this
property, unless p ∈ [1/(n+ 1), 1/n] (see Borell [6, Theorem 4.1 and subsequent paragraph]).
In addition, the next proposition demonstrates that contrary to the local characterization of
the class of p-concave measures given by Theorem 2.4, q-CC measures do not have any local
characterization in the following sense:

Proposition 3.8 (Non-locality of the q-CBM property). Let µ ∈ Cq,n.
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(1) If µ is locally finite at x0 ∈ Rn, then there exists an ε > 0 so that µ|B(x0,ε) /∈ Cq′,n \ {0}
for all q′ ∈ [−∞,∞).

(2) If dµ = f(x)dx, then for any M,R > 0 and x0 ∈ Rn, min(f(x),M)1B(x0,R)(x)dx /∈
Cq′,n \ {0} for all q′ ∈ [−∞,∞).

Furthermore:

(3) If µ is any Borel measure on Rn, then for any x0 ∈ Rn and bounded neighborhood Rn\C
of x0, we have µC ∈ Cq,n for all q ∈ [−∞,∞] (where recall µC was defined in (3.2)).

Proof. The first two assertions are immediate since a non-zero q′-CC measure, q′ ∈ [−∞,∞),
is always infinite by Proposition 3.7 (1). The last assertion follows since if A,B are two
Borel subsets of Rn whose complements have finite µC-measure, then necessarily A and B
contain C. But since Rn \ C is bounded, we easily see that λC + (1 − λ)C = Rn for all
λ ∈ (0, 1), and hence µC(Rn \ (λA+ (1− λ)B)) = µC(∅) = 0 and so µC is trivially q-CC for
any q ∈ [−∞,∞].

4 Homogeneous Measures

So far we have discussed various properties of q-CC measures, but we have yet to produce a
single non-trivial (σ-finite) example of such measures. In this section we will show that such
measures exist in abundance.

We begin with the following lemma, which will be superseded by the ensuing theorem.

Lemma 4.1. Let µ be a q-concave and q-homogeneous measure on Rn, q ∈ (−∞, 1/n] \ {0}.
Then µ is also q-CC.

Using the Borell–Brascamp–Lieb Theorem 2.4 and Lemma 2.8, we immediately deduce
the following (essentially equivalent) corollary:

Corollary 4.2. Let w : Rn → R+ be a p-concave and p-homogeneous density on Rn, p ∈
[−1/n,∞] \ {0}. Then µ = w(x)dx is q-CC, with 1

q = 1
p + n.

Proof of Lemma 4.1. Since µ is q-concave, it is also −∞-concave by Remark 2.5. It follows
by Proposition 3.7 that µ is also ∞-CC. It remains to employ the homogeneity of µ in order
to “self-improve” the degree of complemented-concavity from ∞ to q.

Indeed, let A,B ⊂ Rn denote two Borel sets with µ(Rn \ A), µ(Rn \ B) < ∞, and let
λ ∈ (0, 1). Assume first that µ(Rn \A)µ(Rn \B) > 0 and define:

A′ =
λµ(Rn \A)q + (1− λ)µ(Rn \B)q

µ(Rn \A)q
A ;

B′ =
λµ(Rn \A)q + (1− λ)µ(Rn \B)q

µ(Rn \B)q
B ;

λ′ =
λµ(Rn \A)q

λµ(Rn \A)q + (1− λ)µ(Rn \B)q
.
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Then by ∞-complemented concavity (3.1) applied to A′,B′ and λ′ ∈ (0, 1):

µ∗(Rn \ (λ′A′ + (1− λ′)B′)) ≤ max
(
µ(Rn \A′), µ(Rn \B′)

)
.

Plugging in the definitions of A′,B′,λ′, and using the fact that Rn \ δC = δ(Rn \ C) (δ 6= 0)
and that µ is q-homogeneous, we obtain:

µ∗(Rn \ (λA+ (1− λ)B)) ≤ (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)
1
q , (4.1)

which is the desired q-CBM inequality. Finally, when µ(Rn \ A)µ(Rn \ B) = 0, (4.1) is
satisfied by an approximation argument. Indeed, whenever µ is not identically zero, since µ
has a non-trivial density on an m-dimensional affine subspace of Rn, then for any Borel set C
with µ(Rn \C) <∞, we can find Borel sets Ck ⊂ C so that (0,∞) 3 µ(Rn \Ck)→ µ(Rn \C)
as k →∞, and therefore:

µ∗(Rn \ (λA+ (1− λ)B)) ≤ lim inf
k→∞

µ∗(Rn \ (λAk + (1− λ)Bk))

≤ lim
k→∞

(λµ(Rn \Ak)q + (1− λ)µ(Rn \Bk)q)
1
q = (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)

1
q .

The main result of this section asserts that the requirement in Lemma 4.1 that µ be
q-concave, is redundant when q ≤ 1:

Theorem 4.3. Fix q ≤ 1, q 6= 0, and let µ be any σ-finite q-homogeneous Borel measure on
Rn. Then µ is q-CC.

Again, using Lemma 2.8, we immediately deduce the following corollary:

Corollary 4.4. Let w : Rn\{0} → R+ denote a p-homogeneous Borel density, p ∈ (−∞,− 1
n−1 ]∪

(− 1
n , 0) ∪ (0,∞]. Then µ = w(x)dx is q-CC, where 1

q = 1
p + n.

Proof of Theorem 4.3. Let us disintegrate µ into its one-dimensional radial components µθ
supported on Rθ := R+θ, θ ∈ Sn−1, as follows:

µ =

∫
Sn−1

µθdη(θ) , µθ = r1/q−1dLebRθ(rθ) , (4.2)

where η is a σ-finite Borel measure on Sn−1. Indeed, for sets of the form (s, t]A where
(s, t] ⊂ (0,∞) and A ⊂ Sn−1 is Borel, we easily verify by homogeneity that:

µ((s, t]A) = q(t1/q − s1/q)η(A) , η(A) :=
1

q(21/q − 1)
µ((1, 2]A) .

Since sets of the above form generate the entire Borel σ-algebra in Rn, the representation
(4.2) follows by Caratheodory’s extension theorem.

Set 1
p = 1

q − 1. Since µθ = 1{r>0}r
1/pdLebRθ(r) has a p-homogeneous and p-concave

density on Rθ, it follows by Corollary 4.2 and Proposition 3.6 (5) that µθ is q-CC on Rn for
every θ ∈ Sn−1. Recall that when q ≤ 1 then the class of q-CC measures is a convex cone,
and so by the extended formulation of Proposition 3.6 (3) and the representation (4.2), it
follows that µ is also q-CC, concluding the proof.
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Remark 4.5. In particular, we conclude that the Lebesgue measure (in fact, restricted to
an arbitrary measurable cone) is a 1/n-CC measure, satisfying (3.1) with q = 1/n. Using
Theorem 4.3 and the properties of Section 3, one can also easily construct many additional
q-CC measures which are not necessarily homogeneous. For example, if µ is any non-zero q-
homogeneous σ-finite measure with q ≤ 1, and x1, x2, . . . , xk ∈ Rn are distinct points (k ≥ 2),
then the measure

µ̃(A) =

k∑
i=1

µ(A+ xi)

is also q-CC, but no longer homogeneous. By using several different homogeneous measures,
or even different values of qi ≤ q (as Cqi,n ⊂ Cq,n), one can create many further examples
as well. An interesting question is what are the extremal rays of the convex cone of q-CC
measures on Rn for a given q ≤ 1.

4.1 Isoperimetric Inequality

As a corollary of Theorem 4.3 and Proposition 3.4, one immediately obtains a sharp isoperi-
metric inequality for q-homogeneous measures:

Corollary 4.6. Let µ denote a q-homogeneous σ-finite Borel measure on Rn with q < 0; in
particular, the following applies if µ = w(x)dx and w : Rn \ {0} → R+ is a p-homogeneous
Borel density with p ∈ (−1/n, 0). Let ‖·‖K denote an arbitrary semi-norm on Rn with open
unit ball K so that µ(Rn \K) <∞. Then the following isoperimetric inequality holds:

µ−‖·‖K
(C) ≥ −1

q
µ(Rn \K)qµ(C)1−q (4.3)

for any Borel set C with µ(C) <∞, and with equality for C = Rn\tK, t > 0. In other words,
complements of homothetic copies of K are isoperimetric minimizers for (Rn, ‖·‖K , µ).

Remark 4.7. We refer to the Introduction for remarks and references regarding previously
known partial results. The range p ≤ −1/n is excluded above for good reason: it is known

that even for Euclidean space endowed with the density w(x) = |x|1/p for p in that range,
isoperimetric minimizers do not exist [13, Prop 7.3].

The next subsection addresses the characterization of the equality cases in the q-CBM
inequality and corresponding isoperimetric inequality.

4.2 Equality Cases

In this subsection, our analysis will be based on Dubuc’s characterization in Theorem 2.13
of the equality case in the q-BM inequality. In the next section, we will present a different
argument based on a 1-dimensional analysis, which applies in a more general setting on one
hand, but assumes that one of the sets is star-shaped on the other.

We begin with a technical lemma required for the ensuing theorem, in which the super-
fluous technical assumptions will be removed. Although we will only apply this lemma in
dimension 1, we formulate it arbitrary dimension.
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Lemma 4.8. Fix q < 0 and let µ = w(x)dx be a q-concave and q-homogeneous measure on Rn
with density bounded above on Sn−1. Let A and B be two Borel sets with µ(Rn\A), µ(Rn\B) ∈
(0,∞), and assume in addition that B is open and contains the origin. If for some λ ∈ (0, 1)
we have:

µ(Rn \ (λA+ (1− λ)B)) = (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)
1
q ,

then up to null-sets A∩Σ and B ∩Σ are homothetic and convex, where Σ is the convex cone
on which µ is supported.

Note that since B is open then all the relevant sets are Borel, so we do not need to worry
about measurability issues.

Proof. By the homogeneity of µ, we may scale B to a set B′ = 1
cB so that µ(Rn \ B′) =

µ(Rn \A), and set2 δ := λ/(λ+ (1−λ)c) ∈ (0, 1). Employing the homogeneity and using the
assumption, we have:

µ
(
Rn \

(
δA+ (1− δ)B′

))q
=

1

λ+ (1− λ)c
· µ (Rn \ (λA+ (1− λ)B))q

=
1

λ+ (1− λ)c
(λµ(Rn \A)q + (1− λ)µ(Rn \B)q)

= δµ(Rn \A)q + (1− δ)µ(Rn \B′)q = µ(Rn \B′)q = µ(Rn \A)q .

We now approximate the measure µ is a way similar to that in the proof of Proposition
3.7 (3). Set wk := min(w, k) and µk := wk(x)dx. Since w is p-concave (with 1

q = 1
p +n), then

so is wk, and hence µk is q-concave for all k ≥ 0. Since B′ contains a neighbourhood of the
origin and w is bounded on Sn−1 and is homogeneous, we have µ(Rn \B′) = µk(Rn \B′) for
large enough k. Since µ(Rn \A) <∞ the origin is in the closure of A, so δA+ (1− δ)B′ also
contains a neighborhood of the origin. It follows that for large enough k we have:

µk
(
Rn \

(
δA+ (1− δ)B′

))
= µ

(
Rn \

(
δA+ (1− δ)B′

))
= µ(Rn \B′) = µk(Rn \B′).

Since µk has finite mass (µ is integrable at infinity as q < 0), we may take the complement
and deduce that µk(δA+ (1− δ)B′) = µk(B

′).
Now we wish to calculate µk(A). On the one hand:

µk(Rn \A) ≤ µ(Rn \A) = µ(Rn \B′) = µk(Rn \B′),

so µk(A) ≥ µk(B′). On the other hand µk is q-concave, so:

µk(B
′) = µk

(
δA+ (1− δ)B′

)
≥
(
δµk(A)q + (1− δ)µk(B′)q

) 1
q .

Solving for µk(A) we see that µk(A) ≤ µk(B′), so all together we have µk(A) = µk(B
′).

2In the published version, there was an erroneous and unnecessary reduction to the case δ = 1/2
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Now we are ready to invoke Dubuc’s characterization of equality in the q-BM inequality.
We know that:

µk
(
δA+ (1− δ)B′

)
= µk(A) = µk(B

′) =
(
δµk(A)q + (1− δ)µk(B′)q

) 1
q > 0 .

Since µk is q-concave and is supported on the same cone Σ as µ, it follows by Corollary 2.16
that up to a null-set, A∩Σ coincides with (mB+ b)∩Σ for some m > 0 and b ∈ Rn, and that
w(mx+ b) = cw(x) for almost all x ∈ B and some c > 0. Since B was assumed to contain a
neighborhood of the origin and since w is continuous in the interior of Σ and p-homogeneous,
it follows that limx→bw(x) = limx→0w(x) = +∞. Since the w was also assumed bounded on
Sn−1, we must have b = 0.

Finally, the convexity up to null-sets of A ∩Σ and B ∩Σ follows by mimicking the proof
of the second part of Corollary 2.16.

Now we can prove a stronger version of Lemma 4.8, which does not require any concavity
assumptions:

Theorem 4.9. Fix q < 0 and let µ denote a σ-finite q-homogeneous measure supported on
the cone Σ. Let A,B be two Borel sets with µ(Rn \ A), µ(Rn \ B) ∈ (0,∞), and assume in
addition that B is an open set containing the origin. If for some λ ∈ (0, 1) we have:

µ(Rn \ (λA+ (1− λ)B)) = (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)
1
q , (4.4)

then A ∩Σ and B ∩Σ are homothetic up to a null-set. Furthermore, if Σ is convex, then up
to null-sets, so are A ∩ Σ and B ∩ Σ.

Proof. Let us examine more carefully the proof of Theorem 4.3; we proceed with the same
notation as there. The proof of Theorem 4.3 relied on the convex cone and intrinsicness
properties given by Proposition 3.6 (3) and (5), so to obtain equality in (4.4) we must have
equality in all of the sequence of inequalities appearing in the proofs of these properties. In
particular, for η-almost-every θ ∈ Sn−1:

• Setting Rθ := R+θ, Aθ := A∩Rθ and Bθ := B∩Rθ, by Fubini µθ(Rθ \Aθ), µθ(Rθ \Bθ) ∈
(0,∞). In addition, B ∩ Rθ is open and contains the origin.

• We must have equality in the q-CBM inequality for the 1-dimensional measure µθ in
(3.3). It follows by Lemma 4.8 that Aθ coincides with mθBθ up to a 1-dimensional
null-set, for mθ > 0.

• We must have equality in the inequality (3.5) reducing to the 1-dimensional case, i.e.:

(µθ)∗(Rθ \ (λA+ (1− λ)B)) = (µθ)∗(Rθ \ (λAθ + (1− λ)Bθ)) . (4.5)

In addition, we must have equality in the reverse triangle inequality in Lq(λ, 1−λ) employed
in (3.4). Since q < 0, the function R2

+ 3 (x, y) 7→ (λxq + (1 − λ)yq)1/q is strictly convex in
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the normal direction to (x, y), but linear in the radial direction. Consequently, for η-almost-
every θ ∈ Sn−1, the two-dimensional points (µθ(Rθ \ Aθ), µθ(Rθ \ Bθ)) must lay on a one-
dimensional linear subspace. Since Aθ = mθBθ up to a null-set for η-almost-all θ ∈ Sn−1,
and µθ is q-homogeneous, it follows that mθ is η-almost-everywhere equal to a constant
m > 0. This implies that A and mB coincide up to zero µ-measure, and in particular, that
A ∩ Σ = m(B ∩ Σ) up to an n-dimensional null-set.

Finally, when Σ is convex, the convexity up to null-sets of A∩Σ and B∩Σ follows exactly
as in the previous lemma, by mimicking the proof of the second part of Corollary 2.16.

To conclude this section, we state a characterization of the equality case in the corre-
sponding isoperimetric inequality. For isoperimetric minimizers which are complements of
convex sets, one may employ the Bonnesen idea exactly as in Section 2 and reduce to the
characterization of the equality case in the q-CBM inequality given in Theorem 4.9. Arbi-
trary minimizers will be handled by a slightly more delicate analysis developed in the next
section for more general densities, and so we only quote the following particular case of the
more general Theorem 5.15 from the next section.

Theorem 4.10. Fix q < 0, and let µ denote a σ-finite q-homogeneous measure on Rn
supported on the cone Σ. Let B be any convex domain containing the origin with µ(Rn \B) ∈
(0,∞). Assume that for some Borel set C with µ(C) ∈ (0,∞) we have:

µ−B(C) = −1

q
µ(Rn \B)qµ(C)1−q.

Then up to a null-set, C ∩ Σ is homothetic to Σ \B.

Proof. Apply Theorem 5.15 with ϕ(t) = t
1
q
−1

and consult Remark 5.9. The assertion remains
valid for any star-shaped domain B, to be defined in the next section; in that case, it follows
from Theorem 5.15 that if Σ is assumed convex, then up to null-sets, so are B ∩Σ and Σ \C.
3

Remark 4.11. Note that contrary to the positively homogeneous case, we do not require any
translations in the characterization of isoperimetric minimizers for the negatively homoge-
neous case. Loosely speaking, the reason is that the requirement µ(Rn\B) <∞ automatically
synchronizes B and µ to have the same translation invariance, since µ is non-integrable at
the origin.

5 Non-homogeneous Measures

When the density is no longer assumed homogeneous, we must be careful and distinguish
between different types of possible concavity inequalities (cf. Borell [6, Section 5] where a

3The published version contains a proof under the assumption, erroneously omitted, that B and Rn \ C
are convex.
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variant of q-concave measures is considered, in which the weights λ and 1 − λ in (2.2) are
both replaced by 1). The pertinent one for deducing isoperimetric inequalities is formulated
in the following:

Definition 5.1. Fix a continuous strictly monotone function Φ : R+ → [0,∞], and let B
be a Borel subset of a convex cone Σ. A Borel measure µ on Σ is called B-one-sided Φ−1-
complemented concave (“µ is OCC”), and is said to satisfy a B-one-sided Φ−1-complemented-
Brunn-Minkowski inequality (“OCBM inequality”), if:

µ(Σ \ (A+ tB)) ≤ Φ(Φ−1(µ(Σ \A)) + tΦ−1(µ(Σ \B))) ,

for all t ≥ 0 and Borel sets A ⊂ Σ so that µ(Σ \A) <∞.

Remark 5.2. In this section, Φ will always be strictly decreasing on its support [0, z]. Our
convention is that Φ−1(0) = z <∞ if the support is compact, and Φ−1(0) =∞ otherwise. It
follows that Φ−1◦Φ = Id on [0, z], and that Φ−1◦Φ ≤ Id in general. In any case Φ◦Φ−1 = Id
since Φ is continuous.

Since we no longer assume that our measure is q-concave, we first need to prove the
required 1-D results directly (in contrast to the previous section, where we could simply
invoke the results of Section 2).

5.1 Inequalities in dimension 1

Proposition 5.3 (OCBM Inequality in dimension 1). Assume that ϕ : (0,∞)→ R+ is non-
increasing, lower semi-continuous, non-integrable at the origin and integrable at infinity, and
set µ = ϕ(t)dt on R+. Denote Φ(t) :=

∫∞
t ϕ(s)ds, and let B = [0, b]. Then:

(1) µ−B(C) ≥ b · ϕ ◦ Φ−1(µ(C)) for any Borel set C ⊂ R+ with µ(C) <∞.

(2) µ is B-one-sided Φ−1-complemented-concave.

Remark 5.4. Throughout this section we set ϕ(∞) = 0.

Proof. Note that one can rescale B without changing the validity of either assertions, so
we assume that b = 1. Let C ⊂ R+ denote a Borel set with µ(C) < ∞. Assume that
µ−B(C) <∞, since otherwise the isoperimetric inequality holds trivially. Denote A := R+ \C,
and set A′ := ∩ε>0(A + εB) ⊃ A, the “right closure of A”, and C ′ := R+ \ A′ ⊂ C.
Clearly, A′ is closed to the right, i.e. A′ 3 xi ↗ x implies x ∈ A′. Clearly µ(C ′) = µ(C)
since otherwise µ−B(C) = ∞; and furthermore µ−B(C ′) = µ+

B(A′) = µ+
B(A) = µ−B(C) by an

elementary inspection.
Now consider the point t0 = inf C ′; we have [0, t0] ⊂ A′. If t0 = ∞ this means that

C ′ = ∅ and so C has zero measure, so there is nothing to prove. Otherwise, observe that
µ−B(C ′) = µ+

B(A′) ≥ ϕ(t0) : indeed, if ϕ(t0) = 0 this holds trivially. Otherwise, the lower
semi-continuity and monotonicity of ϕ imply that ϕ(t0 + ε1) > 0 for some ε1 > 0; since t0
is a left accumulation point of C ′, and since µ+

B(A′) < ∞, there must be an ε0 ∈ (0, ε1) so
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that (t0, t0 + ε0) ⊂ C ′, since otherwise we would have a disjoint union ∪∞i=1(ai − εi, ai) ⊂ C ′

with ai ↘ t0 and εi > 0, yielding µ+
B(A′) ≥ ϕ(t0 + ε1) lim infε→0

1
ε

∑∞
i=1 min(εi, ε) = ∞, a

contradiction; hence, µ−B(C ′) = µ+
B(A′) ≥ lim infε→0

1
ε

∫ t0+ε
t0

ϕ(s)ds = ϕ(t0), as claimed.
Lastly, since C ′ ⊂ [t0,∞) and hence µ(C) = µ(C ′) ≤ µ([t0,∞)) = Φ(t0), it follows when

ϕ(t0) > 0 that:

µ−B(C) = µ−B(C ′) ≥ ϕ(t0) ≥ ϕ ◦ Φ−1 ◦ Φ(t0) ≥ ϕ ◦ Φ−1(µ(C)) ,

where we have used again the monotonicity of ϕ and the fact that Φ(t0) > 0 by lower semi-
continuity and hence Φ−1 ◦ Φ(t0) = t0. When ϕ(t0) = 0, we have µ(C) ≤ Φ(t0) = 0, and
hence µ−B(C) ≥ 0 = ϕ ◦ Φ−1(0) = ϕ ◦ Φ−1(µ(C)) again by lower semi-continuity. The first
assertion is thus proved.

The second assertion with B = [0, 1] follows by integrating the first one. Indeed, if
µ(R+ \A) <∞, then:

Ψ(t) := Φ−1(µ(R+ \ (A+ tB))) , t ∈ R+ , (5.1)

is a continuous finite-valued function, and so by the fundamental theorem of calculus and
Fatou’s lemma:

Ψ(t)−Ψ(0) = lim
ε→0

∫ t

0

Ψ(s+ ε)−Ψ(s)

ε
ds ≥

∫ t

0
lim inf
ε→0

Ψ(s+ ε)−Ψ(s)

ε
ds

=

∫ t

0

µ−B(R+ \ (A+ sB))

ϕ ◦ Φ−1(µ(R+ \ (A+ sB)))
ds ≥

∫ t

0
ds ≥ t · Φ−1(µ(R+ \B)) . (5.2)

Note that we have used that B is convex to write A + (s + ε)B = (A + sB) + εB and that
Φ−1 ◦ Φ ≤ Id. The second assertion follows since Φ is non-increasing and Φ ◦ Φ−1 = Id.

Remark 5.5. The OCBM inequality is false for general log-convex functions ϕ and Borel sets
B. This may be checked by taking for instance ϕ(t) =

(
et − 1

)−1
, A = [0, 1], B = [0, 1]∪ [2, 3]

and t = 3; we omit the tedious calculation. However, it is easy to check that the proof of the
isoperimetric inequality remains valid for any compact B ⊂ R+, if we set b = Leb(B).

5.2 Equality in dimension 1

Proposition 5.6 (Equality in OCBM inequality in dimension 1). With the same assumptions
and notation as in Proposition 5.3:

(1) Assume that µ−B(C) = b · ϕ ◦ Φ−1(µ(C)) for some Borel set C ⊂ R+ with µ(C) < ∞.
Then up to a null-set, C coincides with a (possibly empty) right half-line [c,∞).

(2) Assume that:

µ(R+ \ (A+ t0B)) = Φ(Φ−1(µ(R+ \A)) + t0Φ−1(µ(R+ \B))) ,

for some t0 > 0 and Borel set A ⊂ R+ so that µ(R+ \ A) <∞. Then up to a null-set,
A coincides with an interval [0, a].
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Proof. We may assume by scaling that B = [0, 1]. To prove the first assertion, let C be a
Borel set on which the isoperimetric inequality is attained, having µ-measure v ∈ [0,∞). We
continue with the notation used in the proof of Proposition 5.3, recalling that A := R+ \ C,
A′ := ∩ε>0(A + εB) ⊃ A and C ′ := R+ \ A′ ⊂ C. Clearly µ(C ′) = µ(C) since otherwise
µ−B(C) =∞ and so C cannot be a minimizer, and furthermore µ−B(C ′) = µ+

B(A′) = µ+
B(A) =

µ−B(C). Consequently, C ′ is also a minimizer of measure v.
As in the proof of the isoperimetric inequality, we set t0 := inf C ′ so that [0, t0] ⊂ A′.

If t0 = ∞ this means that C ′ = ∅ and so v = 0 and C is a null-set. Otherwise, as in
the proof of Proposition 5.3, we know that µ−B(C ′) = µ+

B(A′) ≥ ϕ(t0). Now, since C ′ is a
minimizer, it follows that ϕ ◦ Φ−1(v) ≥ ϕ(t0). And since ϕ is non-increasing, it follows that
t0 ≥ s0 := Φ−1(v). But C ′ ⊂ [t0,∞) ⊂ [s0,∞), and both sets from either side have µ-measure
v. It follows that they must coincide up to null-measure, so C ′ must be (up to null-measure)
a right half-line. Since C ′ ⊂ C, µ(C ′) = µ(C) and ϕ is non-increasing, it follows that C is
also a right half-line up to null-measure, concluding the proof of the first assertion.

As for the equality case in the OCBM inequality, let A ⊂ R+ and t0 > 0 be as above. Note
that the proof of the second assertion of Proposition 5.3 actually gives Ψ(t) − Ψ(s) ≥ t − s
for all t ≥ s ≥ 0, where Ψ was defined in (5.1). On the other hand, we are given that
Ψ(t0) = Φ−1 ◦ Φ(Ψ(0) + t0) ≤ Ψ(0) + t0. Consequently, we deduce that Ψ(t)−Ψ(0) = t for
all t ∈ [0, t0], and so taking the derivative at t = 0 we obtain that:

µ−B(R+ \A) = ϕ ◦ Φ−1(R+ \A) .

By the first assertion it follows that R+ \ A coincides with a right half-line up to a null-set,
concluding the proof of the second assertion.

5.3 Inequalities in dimension n

We now establish an n-dimensional OCBM inequality for a certain class of measures. Con-
trary to the previous section, where we first established a CBM inequality and then deduced
its associated isoperimetric inequality, in this section we prefer to establish both types of
inequalities independently, permitting us to handle below sets B which are not necessarily
convex.

Definition 5.7 (Star-Shaped Domain). A Borel set B ⊂ Rn will be called a star-shaped
domain if there exists a measurable function ρB : Sn−1 → (0,∞) so that:

B =
{
rθ ; θ ∈ Sn−1 , r ∈ [0, ρB(θ))

}
.

We will denote ‖θ‖B = 1/ρB(θ) for θ ∈ Sn−1, and extend ‖·‖B as a 1-homogeneous function
to the entire Rn.

Theorem 5.8. Let B denote a star-shaped domain in Rn and let w0 : Rn → R+ denote
a 1-homogeneous measurable function so that

∫
B w0(x)dx < ∞. Let ϕ : R+ → R+ denote

a non-increasing log-convex function, non-integrable at the origin and integrable at infinity.
Set:

µ = w0(x/ ‖x‖B) ‖x‖1−nB ϕ(‖x‖B)dx .
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Then, denoting Φ(t) :=
∫∞
t ϕ(s)ds and I := ϕ ◦ Φ−1, we have:

(1)
µ−B(C) ≥ I(µ(C)) for any Borel set C ⊂ Rn with µ(C) <∞ .

(2) If B is in addition convex, complements of homothetic copies of B are isoperimetric
minimizers for (Rn, ‖·‖B , µ).

(3) µ is B-one-sided Φ−1-complemented-concave:

µ∗(Rn \ (A+ tB)) ≤ Φ(Φ−1(µ(Rn \A)) + tΦ−1(µ(Rn \B))) ,

for all t ≥ 0 and any Borel set A so that µ(Rn \A) <∞.

Proof. Let us disintegrate µ into its one-dimensional radial components µθ defined on Rθ :=
R+θ, θ ∈ Sn−1, as follows:

µ =

∫
Sn−1

µθdη(θ) , (5.3)

where:

µθ = ϕθ(r)dLebRθ(rθ) , ϕθ(r) =
1

ρB(θ)
ϕ(r/ρB(θ))) , dη(θ) := w0(ρB(θ)θ)ρB(θ)ndθ .

Indeed, for any Borel set C ⊂ Rn:

µ(C) =

∫
Sn−1

∫ ∞
0

1C(rθ)rn−1w0(ρB(θ)θ)ρB(θ)n−1r1−nϕ(r/ρB(θ))drdθ =

∫
Sn−1

µθ(C)dη(θ) .

By integrating in polar coordinates, it is immediate to verify that the assumption that∫
B w0(x)dx < ∞ is equivalent to η being a finite Borel measure on Sn−1. Since we may

assume that η is not identically zero (otherwise there is nothing to prove), by scaling ϕ
(which does not influence its log-convexity), we may also assume that η(Sn−1) = 1. It follows
by Fubini’s theorem that if µ(C) <∞ then µθ(Cθ) <∞ for η-almost every θ ∈ Sn−1, where
Cθ := C ∩ Rθ.

Now by Proposition 5.3, we know that for any Cθ ⊂ Rθ with µθ(Cθ) <∞ we have:

(µθ)
−
Bθ

(Cθ) ≥ ρB(θ)Iθ(µθ(Cθ)) = I(µθ(Cθ)) ,

where Φθ =
∫∞
t ϕθ(r)dr and Iθ = ϕθ ◦ (Φθ)

−1 = 1
ρB(θ)I. In addition, observe that the log-

convexity of ϕ is equivalent to the convexity of I = ϕ ◦ Φ−1; indeed, when ϕ is positive and
twice differentiable:

I ′ = (logϕ)′ ◦ Φ−1 , I ′′ =
(logϕ)′′

ϕ
◦ Φ−1 , (5.4)
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and the general case follows by approximation. In conjunction with Fatou’s lemma, set
inclusion and Jensen’s inequality, it follows that:

µ−B(C) = lim inf
ε→0

1

ε

∫
Sn−1

µθ(((Rn \ C) + εB) \ (Rn \ C))dη(θ)

≥
∫
Sn−1

lim inf
ε→0

1

ε
µθ(((Rn \ C) + εB) \ (Rn \ C))dη(θ) (5.5)

≥
∫
Sn−1

lim inf
ε→0

1

ε
µθ(((Rθ \ C) + εBθ) \ (Rθ \ C))dη(θ) (5.6)

=

∫
Sn−1

(µθ)
−
Bθ

(Cθ)dη(θ) ≥
∫
I(µθ(Cθ))dη(θ) (5.7)

≥ I(

∫
µθ(Cθ)dη(θ)) = I(µ(C)) . (5.8)

For the second assertion, observe that when C is the complement of a star-shaped domain
in Rn, all inequalities above with the possible exception of (5.6) and (5.8) are in fact equalities.
When B is in addition assumed convex and C is the complement of a homothetic copy of B,
then we also have equality in (5.6), and as θ 7→ µθ(Cθ) is constant on Sn−1, we have equality
in Jensen’s inequality (5.8).

For the last assertion, note that as usual µθ(Rn \A) <∞ for η-almost every θ ∈ Sn−1 by
Fubini’s theorem. Applying Proposition 5.3, we conclude that for η-almost every θ we have:

(µθ)∗ (Rθ \ (Aθ + tBθ)) ≤ Φθ

(
Φ−1
θ (µθ(Rθ \Aθ)) + tΦ−1

θ (µθ(Rθ \Bθ))
)

= Φ
(
Φ−1 (µθ(Rθ \Aθ)) + tΦ−1 (µθ(Rθ \Bθ))

)
= Φ

(
Φ−1 (µθ(Rθ \Aθ)) + tΦ−1 ◦ Φ(1)

)
.

Here Φθ(t) =
∫∞
t ϕθ(r)dr = Φ(t/ρB(θ)), and so the first equality above is immediate, and the

second one follows since µθ(Rθ \ Bθ) = Φθ(ρB(θ)) = Φ(1). We set t0 := tΦ−1 ◦ Φ(1) ∈ (0, t]
(recall that Φ−1 ◦ Φ(1) may be strictly smaller than 1 if Φ(1) = 0).

Define F : R+ → R+ by F (x) = Φ(Φ−1(x) + t0). When ϕ is positive and differentiable,
direct calculation confirms that:

F ′′(x) =
ϕ(a+ t0)

ϕ2(a)
((logϕ)′(a)− (logϕ)′(a+ t0)) , a = Φ−1(x) .

In that case, the log-convexity of ϕ implies that F is concave; the general case follows by
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approximation. Consequently, by set inclusion and Jensen’s inequality, we obtain:

µ∗(Rn \ (A+ tB)) ≤
∫
Sn−1

(µθ)∗ (Rn \ (A+ tB))dη(θ)

≤
∫
Sn−1

(µθ)∗ (Rθ \ (Aθ + tBθ))dη(θ) (5.9)

≤
∫
Sn−1

F (µθ(Rθ \Aθ)) dη(θ) ≤ F
(∫

Sn−1

µθ(Rθ \Aθ)dη(θ)

)
= F

(∫
Sn−1

µθ(Rn \A)dη(θ)

)
= F (µ(Rn \A)) = Φ(Φ−1(µ(Rn \A)) + t0)

= Φ(Φ−1(µ(Rn \A)) + tΦ−1(µ(Rn \B))) ,

which is the desired assertion. The last equality follows since as explained above µθ(Rn\B) =
µθ(Rθ \Bθ) = Φ(1) for all θ ∈ Sn−1 and η was assumed to be a probability measure.

A final remark: when B is convex, the last assertion may also be obtained by integrating
as in (5.2) the infinitesimal isoperimetric form obtained in the first assertion, yielding the
desired:

Φ−1(µ(Rn \ (A+ tB)))− Φ−1(µ(Rn \A)) ≥ t ≥ t · Φ−1(µ(Rn \B)) .

Remark 5.9. Note that all the results remain valid for any measure µ of the form (5.3),
where η is any finite Borel measure on Sn−1. The assumption in the formulation of the
Theorem that η has an integrable density is only for aesthetical convenience.

Remark 5.10. When B is the Euclidean ball and w0 and ϕ are continuous and positive on
Sn−1 and (0,∞), respectively, the first two assertions were proved by Howe [19] by using a
warped-product representation of the space. As Howe points out, his results and methods
should apply for arbitrary star-shaped smooth compact domains B, but even in that case,
it seems that Howe’s warped-product boundary measure does not coincide with ours, and
there are various technicalities which should be taken care of, such as using the convexity of
B where needed and defining the corresponding measure µ correctly; furthermore, it is not
clear how to extend Howe’s method to the case when w0 is no longer assumed continuous or
positive, in which case the condition that

∫
B w0(x)dx <∞ becomes meaningful.

5.4 Characterization of equality in dimension n

We will require the following intermediate results, which may be of independent interest:

Definition 5.11. The radial sum of two star-shaped domains A,B ⊂ Rn is denoted A+r B
and defined by:

ρA+rB(θ) := ρA(θ) + ρB(θ) .
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Lemma 5.12. Let Σ ⊂ Rn denote a convex cone, and let A,B ⊂ Rn denote two star-shaped
domains with Leb(A ∩ Σ), Leb(B ∩ Σ) <∞. Assume that:

Leb {(A+B) ∩ Σ) \ ((A ∩ Σ) +r (B ∩ Σ))} = 0 .

Then up to null-sets, A ∩ Σ and B ∩ Σ are homothetic. Furthermore, if both have positive
Lebesgue measure, then they are both convex up to null-sets.

Proof. Set Σ0 := Σ∩ Sn−1. On one hand, by polar integration and the triangle inequality in
Ln:

Leb((A ∩ Σ) +r (B ∩ Σ)) =

(
1

n

∫
Σ0

(ρA(θ) + ρB(θ))ndθ

)1/n

≤
(

1

n

∫
Σ0

ρA(θ)ndθ

)1/n

+

(
1

n

∫
Σ0

ρB(θ)ndθ

)1/n

= Leb(A ∩ Σ)1/n + Leb(B ∩ Σ)1/n .

On the other hand, by the convexity of Σ and the Brunn–Minkowski inequality:

Leb((A+B) ∩ Σ)1/n ≥ Leb((A ∩ Σ) + (B ∩ Σ))1/n ≥ Leb(A ∩ Σ)1/n + Leb(B ∩ Σ)1/n .

It follows that all of the above inequalities are equalities.
Now since Leb(A∩Σ), Leb(B ∩Σ) <∞ , it follows by the equality case in the Ln triangle

inequality that ρA(θ) and ρB(θ) must be co-linear for almost every θ ∈ Σ0, and therefore
A ∩ Σ and B ∩ Σ are homothetic up to null-sets.

As for the convexity, this follows from the second part of Corollary 2.16 applied to the
measure Leb|Σ.

Lemma 5.13. Let Σ ⊂ Rn denote a convex cone, and let A,B ⊂ Rn denote two star-shaped
domains with Leb(A ∩ Σ), Leb(B ∩ Σ) <∞. Assume that:

lim inf
ε→0

1

ε
Leb ((((A+ εB) \A) ∩ Σ) \ (((A+r εB) \A) ∩ Σ)) = 0 .

Then up to null-sets, A ∩ Σ and B ∩ Σ are homothetic. Furthermore, if both have positive
Lebesgue measure, then they are both convex up to null-sets.

Proof. Set Σ0 := Σ ∩ Sn−1. On one hand, by polar integration and Hölder’s inequality:

lim
ε→0

1

ε
Leb(((A+r εB) \A) ∩ Σ) = lim

ε→0

1

ε

1

n

∫
Σ0

((ρA(θ) + ερB(θ))n − ρA(θ)n) dθ

=

∫
Σ0

ρA(θ)n−1ρB(θ)dθ ≤ n
(

1

n

∫
Σ0

ρA(θ)ndθ

)n−1
n
(

1

n

∫
Σ0

ρB(θ)ndθ

) 1
n

= nLeb(A ∩ Σ)
n−1
n Leb(B ∩ Σ)

1
n ;

indeed, since Leb(A∩Σ), Leb(B ∩Σ) <∞ then we have uniform control over the lower-order
terms in ε, so the calculation of the limit above is well-justified. On the other hand, by the
anisotropic isoperimetric inequality in the convex cone Σ (Proposition 2.9 and Remark 2.11):

lim inf
ε→0

1

ε
Leb(((A+ εB) \A) ∩ Σ) = (Leb|Σ)+

B(A) ≥ nLeb(A ∩ Σ)
n−1
n Leb(B ∩ Σ)

1
n .
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It follows that all of the above inequalities are equalities.
Now since Leb(A ∩ Σ), Leb(B ∩ Σ) < ∞, it follows by the equality case in Hölder’s

inequality that ρA(θ) and ρB(θ) must be co-linear for almost every θ ∈ Σ0, and therefore
A ∩ Σ and B ∩ Σ are homothetic up to null-sets.

Finally, when both sets have positive Lebesgue measure, then by the equality case in the
isoperimetric inequality for the measure Leb|Σ given by Corollary 2.17, it follows that A ∩Σ
and B ∩ Σ are up to null-sets convex.

Remark 5.14. We did not succeed in removing the seemingly superfluous assumption that
Leb(A ∩ Σ), Leb(B ∩ Σ) < ∞ in the above lemmas, at least not for arbitrary star-shaped
domains.

Theorem 5.15. With the notation and assumptions of Theorem 5.8, let Σ denote the cone
on which µ is supported. Assume further that µ(B) > 0 and that ϕ is strictly positive. Then:

(1) Assume that µ−B(C) = I(µ(C)) for a Borel set C with µ(C) ∈ (0,∞). If ϕ is strictly
log-convex or Leb(B ∩ Σ), Leb(Σ \ C) <∞, then C ∩ Σ is homothetic to Σ \B up to a
null-set. Furthermore, if Σ is convex, then up to null-sets, so are Σ \ C and B ∩ Σ.

(2) Assume that:

µ(Rn \ (A+ t0B)) = Φ(Φ−1(µ(Rn \A)) + t0Φ−1(µ(Rn \B))) (5.10)

for some t0 > 0 and a Borel set A with µ(Rn \ A) ∈ (0,∞). If ϕ is strictly log-convex
or Leb(B ∩ Σ), Leb(A ∩ Σ) < ∞, then A ∩ Σ in homothetic to B ∩ Σ up to a null-set.
Furthermore, if Σ is convex, then up to null-sets, so are A ∩ Σ and B ∩ Σ.

Proof. We proceed with the same notation as in the proof of Theorem 5.8.

(1) If µ−B(C) = I(µ(C)) with µ(C) ∈ (0,∞), then we must have equality in the inequalities
(5.7) and (5.8). Equality in (5.7) implies that for η-almost all θ ∈ Sn−1 we have
(µθ)

−
Bθ

(Cθ) = I(µθ(Cθ)). As µθ(Cθ) <∞ and µ(Bθ) > 0 for η-almost all θ, Proposition
5.6 (1) implies that for η-almost all θ, Cθ coincides with [rθ,∞) up to a null set, for
some rθ ∈ (0,∞]. For those θ ∈ Sn−1:

µθ(Cθ) =

∫ ∞
rθ

ϕθ(r)dr =

∫ ∞
rθ

1

ρB(θ)
ϕ

(
r

ρB(θ)

)
dr = Φ

(
rθ

ρB(θ)

)
.

Now if ϕ is assumed strictly log-convex, then by (5.4) the function I must be strictly
convex. Hence the equality case of Jensen’s inequality (5.8) implies that µθ(Cθ) is
constant for η-almost all θ. Since Φ is strictly decreasing (ϕ is strictly positive), it
follows that rθ

ρB(θ) is constant for η-almost all θ ∈ Sn−1. Consequently C ∩ Σ coincides

with a homothetic copy of (Rn \B) ∩ Σ up to a null set, as claimed.

In the case that Σ is convex, we may alternatively argue as follows: denotingA := Rn\C,
recall that we also assume that Leb(A∩Σ), Leb(B∩Σ) <∞. We know that Aθ coincides
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with [0, rθ) up to a null-set for η-almost every θ, and the assumption Leb(A ∩ Σ) <∞
implies that rθ <∞ for η-almost every θ. Consequently, without loss of generality, we
may assume that A is star-shaped (inspect the proof). Since we must have equality in
all of the inequalities in the proof of Theorem 5.8 (1), it follows from the equality in
(5.5) and (5.6) that:

lim inf
ε→0

1

ε
µ (((A+ εB) \A) \ ((A+r εB) \A)) = 0 ; (5.11)

a subtle point to note here is that indeed:∫
Sn−1

lim
ε→0

1

ε
µθ((Aθ + εBθ) \Aθ)dη(θ) = lim

ε→0

1

ε

∫
Sn−1

µθ((Aθ + εBθ) \Aθ)dη(θ)

by monotone convergence, since ϕ is non-increasing. It is easy to verify that (5.11)
implies the same with µ replaced by any measure ν � µ, and since ϕ is assumed
strictly positive, we may use ν = Leb|Σ. It follows by Lemma 5.13 that A ∩ Σ and
B ∩Σ are homothetic up to null-sets. As they both have positive µ-measure and hence
Lebesgue measure, they are also convex up to null-sets, and the assertion follows.

(2) When ϕ is strictly log-convex, the proof of the second assertion is exactly analogous
to the above reasoning, relying on the characterization of equality in the 1-dimensional
OCBM inequality given by Proposition 5.6 (2) and the strict concavity of the function
F introduced in the proof of Theorem 5.8 (3). It follows that A and mB coincide up to
zero µ-measure for some m > 0, and that in particular, A ∩ Σ coincides with mB ∩ Σ
up to a null-set.

In the case that Σ is convex, we may alternatively argue as follows: since we must have
equality in all of the inequalities in the proof of Theorem 5.8 (3), it follows from the
equality in (5.9) and the fact that ϕ is positive that (A + t0B) ∩ Rθ coincides with
Aθ + t0Bθ up to a null-set, for η almost every θ ∈ Sn−1. Consequently, (A+ t0B) ∩ Σ
coincides with (A ∩Σ) +r (t0B ∩Σ) up to a null-set; note that by the characterization
of equality in the 1-dimensional OCBM inequality, we know that Aθ is an interval of
the form [0, ρA(θ)) up to a null-set for η almost-every θ, with ρA(θ) ∈ (0,∞], and our
assumption that Leb(A∩Σ) <∞ rules out the case that ρA(θ) =∞. Consequently, as
in the first assertion, we may assume without loss of generality that A is star-shaped.
Applying Lemma 5.12, it follows that A ∩ Σ and B ∩ Σ are homothetic up to null-
sets. Furthermore, since they have positive µ-measure and hence Lebesgue measure, it
follows that they are both also convex up to null-sets, concluding the proof.

Remark 5.16. When B is the Euclidean ball, w0 and ϕ are continuous and positive on Sn−1

and (0,∞), respectively (so Σ = Rn), and ϕ is not required to be strictly log-convex, the first
assertion was obtained by Howe [19]. As our analysis indicates, various subtleties may occur
when the positivity assumption on w0 is removed.
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Remark 5.17. We observe that most of our results for the q-CC class remain valid if we re-
place it by the class of q-Complemented-Radially-Concave measures µ, obtained by replacing
the Minkowski summation operation with radial summation, thereby increasing the left-hand
side below and making the required inequality more restrictive:

∀λ ∈ (0, 1) ∀ star-shaped domains A,B ⊂ Rn such that µ(Rn \A), µ(Rn \B) <∞ ,

µ(Rn \ (λA+r (1− λ)B)) ≤ (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)1/q ;

(and one may also extend this definition to all Borel sets). The reason is that many of our
results were obtained by integrating a 1-D result on rays, where both types of summation
coincide. This connects our results to the “Dual Brunn–Minkowski” Theory, initiated and
developed by E. Lutwak [22] and subsequently many others (see [18] and the references
therein), and so in this sense our results may be thought of as belonging to a “Complemented
Dual Brunn–Minkowski” Theory.

6 Functional Inequalities

6.1 Functional Formulation of q-CBM

The q-CBM property admits the following functional formulation:

Proposition 6.1. The following statements are equivalent for a measure µ on Rn, λ ∈ (0, 1)
and q < 0:

(1) For any Borel sets A,B ⊂ Rn with µ(Rn \A), µ(Rn \B) <∞:

µ(Rn \ (λA+ (1− λ)B)) ≤ (λµ(Rn \A)q + (1− λ)µ(Rn \B)q)1/q .

(2) For any three measurable functions f, g, h : Rn → R+ satisfying:

h(λx+ (1− λ)y) ≤ max(f(x), g(y)) ∀x, y ∈ Rn ,

if µ({f ≥ t}), µ({g ≥ t}) <∞ for all t > 0, then we have:∫
hdµ ≤

(
λ(

∫
fdµ)q + (1− λ)(

∫
gdµ)q

)1/q

.

Proof. The second assertion trivially implies first by using f = 1Rn\A, g = 1Rn\B and h =
1Rn\(λA+(1−λ)B). Now assume that the first assertion is satisfied, and observe that:

{h < t} ⊃ λ {f < t}+ (1− λ) {g < t} .

Consequently, our assumption implies that:

µ({h ≥ t}) ≤ (λµ({f ≥ t})q + (1− λ)µ({g ≥ t})q)1/q .
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And by the reverse triangle inequality in L1/q when 1/q ≤ 1, we obtain:(∫
hdµ

)q
=

(∫ ∞
0

µ({h ≥ t})dt
)q
≥
(∫ ∞

0
( λµ({f ≥ t})q + (1− λ)µ({g ≥ t})q)1/q dt

)q
≥ λ

(∫ ∞
0

µ({f ≥ t})dt
)q

+(1−λ)

(∫ ∞
0

µ({g ≥ t})dt
)q

= λ

(∫
fdµ

)q
+(1−λ)

(∫
gdµ

)q
,

which is the desired assertion (since q < 0).

Remark 6.2. The analogous functional formulation for the class of q-concave measures would
be that for every q ∈ [−∞, 1

n ], µ is q-concave iff for all λ ∈ (0, 1), if:

h(λx+ (1− λ)y) ≥ min(f(x), g(y)) ∀x, y ∈ Rn ,

then: ∫
hdµ ≥

(
λ(

∫
fdµ)q + (1− λ)(

∫
gdµ)q

)1/q

;

this is a straightforward consequence of Borell’s characterization of q-concave measures in
Theorem 2.4 and the general Borell–Brascamp–Lieb Theorem 2.13 (1).

6.2 Sobolev inequalities

Using nowadays standard methods (see e.g. [2, 1] and the references therein), we may rewrite
the isoperimetric inequalities obtained in the previous sections as Sobolev-type inequalities.
For the reader’s convenience, we sketch the proofs. We begin with some definitions:

Definition 6.3. Let I : R+ → R+ denote a function increasing from I(0) = 0 to I(∞) =∞,
and set Φ = I−1. Let µ denote a Borel measure on Rn. Given a measurable function
f : Rn → R, we define the following weak “quasi-norms”:

‖f‖LΦ,1(µ) :=

∫ ∞
0

I(µ({|f | ≥ t}))dt ;

‖f‖LΦ,∞(µ) := sup
t>0

t · I(µ({|f | ≥ t})) .

The primary example is when I(x) = x1/α and Φ(x) = Φα(x) = xα, α > 0, in which case
we obtain (up to numeric constants) the usual Lorentz quasi-norms Lα,1(µ) and Lα,∞(µ),
respectively. We will use our normalization, and set Lα,s(µ) = LΦα,s(µ), s ∈ {1,∞}.

Remark 6.4. We use the term “quasi-norm” above loosely, without claiming any mathe-
matical meaning. When I is concave (i.e, Φ is convex), it is easy to verify that the resulting
homogeneous functionals are indeed quasi-norms, satisfying:

‖f + g‖LΦ,s(µ) ≤ 21/α
(
‖f‖LΦ,s(µ) + ‖g‖LΦ,s(µ)

)
, s ∈ {1,∞} ,

with α = 1. Similarly, when Φ(x) = xα and α ∈ (0, 1) the above inequality is equally valid.
However, when I is a general convex function (Φ is a general concave one), no weak triangle
inequality as above can be guaranteed.
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Definition 6.5. Given a locally Lipschitz function f : Rn → R and a norm ‖·‖ on Rn, we
define the following measurable function on Rn (cf. [2]):

‖∇f‖∗ (x) := lim sup
y→x

|f(y)− f(x)|
‖y − x‖

.

Proposition 6.6. Let µ denote a Borel measure on Rn and let ‖·‖ denote a norm on Rn.
Given I : R+ → R+ an increasing function from I(0) = 0 to I(∞) = ∞, set Φ = I−1. The
following statements are equivalent:

(1) For every Borel set C ⊂ Rn with µ(C) <∞:

µ−‖·‖(C) ≥ I(µ(C)) .

(2) For any locally Lipschitz function f : Rn → R so that µ({|f | ≥ t}) < ∞ for all t > 0,
we have: ∫

‖∇f‖∗ dµ ≥ ‖f‖LΦ,1(µ) .

(3) For any locally Lipschitz function f : Rn → R so that µ({|f | ≥ t}) < ∞ for all t > 0,
we have: ∫

‖∇f‖∗ dµ ≥ ‖f‖LΦ,∞(µ) .

Sketch of Proof. Clearly ‖f‖LΦ,1(µ) ≥ ‖f‖LΦ,∞(µ), so statement (2) implies (3). To see that

statement (3) implies (1), let C ⊂ Rn denote a Borel set with µ(C) < ∞ and µ−‖·‖(C) < ∞
(otherwise there is nothing to prove). By applying (3) to functions of the form fε(x) =
max(1− infy∈C ‖x− y‖ /ε, 0) and letting ε→ 0, one recovers (1) (see [2, Section 3] for more
details). Finally, (1) implies (2) by the generalized co-area inequality of Bobkov–Houdré [2].
Indeed: ∫

‖∇f‖∗ dµ ≥
∫
‖∇ |f |‖∗ dµ ≥

∫ ∞
0

µ+
‖·‖({|f | < t})dt

=

∫ ∞
0

µ−‖·‖({|f | ≥ t})dt ≥
∫ ∞

0
I(µ({|f | ≥ t})) = ‖f‖LΦ,1(µ) .

Using Proposition 6.6, we may clearly reformulate the isoperimetric inequalities derived
in this work in functional Sobolev-type form. To avoid extraneous generality, we will only
write this out explicitly in the homogeneous case.

Corollary 6.7. Let w : Rn \ {0} → R+ denote a locally-integrable p-homogeneous Borel
density with p ∈ (−1/n, 0), and set µ = w(x)dx. Let ‖·‖ denote a norm on Rn and set:

1

q
=

1

p
+ n , α :=

1

1− q
, C1 := −1

q
µ({‖x‖ ≥ 1})q , C2 := C−α1 .

Then:
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(1) For any locally Lipschitz function f : Rn → R with f(0) = 0 we have:∫
‖∇f‖∗ dµ ≥ C1 ‖f‖Lα,1(µ) .

(2) For any locally Lipschitz function f : Rn → R with f(0) = 0 and β ∈ (0, α), we have:∫
‖∇f‖∗ dµ ≥ C1

(
α− β
α

)1/β

‖f‖Lβ(µ) .

(3) For any essentially bounded locally Lipschitz function f : Rn → R with f(0) = 0, we
have:

‖f‖L1(µ) ≤ C2(

∫
‖∇f‖∗ dµ)α ‖f‖1−αL∞(µ) .

Remark 6.8. When α ≥ 1, it is easy to check that:

‖f‖Lα,1(µ) ≥ ‖f‖Lα(µ) =

(∫ ∞
0

αtα−1µ({|f | ≥ t})dt
)1/α

≥ ‖f‖Lα,∞(µ) ,

and consequently Proposition 6.6 applied with I(x) = cx1/α yields the well known equivalence
between an isoperimetric inequality of the form µ−‖·‖(A) ≥ cµ(A)1/α or µ+

‖·‖(A) ≥ cµ(A)1/α

(the difference is inconsequential) and a Sobolev inequality
∫
‖∇f‖∗ dµ ≥ c ‖f‖Lα(µ), as first

noted by Federer-Fleming [15] and Maz’ya [23] in connection to the optimal constant in
Gagliardo’s inequality on Rn. However, when α ∈ (0, 1), which is the relevant case for us
here, we have:

‖f‖Lα(µ) ≥ ‖f‖Lα,1(µ) ,

and so we cannot replace the Lα,1 quasi-norm by the stronger Lα one in Proposition 6.6 or
Corollary 6.7. Variants of cases (2) and (3) above were also obtained by Bobkov [1, Lemma
8.3] with the same α = 1

1−q for the class of q-concave probability measures, q ∈ (−∞, 1/n],
under the assumption that the function f has zero median. In our results, this assumption
on f is replaced by the requirement that f(0) = 0, since our (non-probability) measures
necessarily explode at the origin. However, it is a very difficult problem to obtain good
constants C1, C2 in Bobkov’s isoperimetric problem (see [1, Corollary 8.2]), in contrast to our
sharp constants C1, C2 above.

Proof of Corollary 6.7. Note that µ is q-homogeneous with q < 0, and since its density is
locally-integrable outside the origin, it follows that the complement of any neighborhood of
the origin has finite µ-measure. Consequently, µ({|f | ≥ t}) <∞ for any continuous function
f with f(0) = 0 and t > 0, and so we may invoke the equivalent versions given by Proposition
6.6 to the isoperimetric inequality guaranteed by Corollary 4.6:

µ−‖·‖(C) ≥ C1µ(C)
1
α ∀ Borel set C ⊂ Rn with µ(C) <∞ .
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This yields the first statement. The second follows by passing to the equivalent Sobolev
inequality with the Lα,∞(µ) norm, and estimating:

‖f‖β
Lβ(µ)

=

∫ ∞
0

βtβ−1µ({|f | ≥ t})dt ≤ sβ +

∫ ∞
s

βtβ−1−αdt · ‖f‖αLα,∞(µ) ,

using the optimal s = ‖f‖Lα,∞ . The third statement is a Nash-type interpolation inequality
which follows from the first statement and Hölder’s inequality:

‖f‖L1(µ) ≤ (‖f‖Lα,1(µ))
α(‖f‖L∞(µ))

1−α .

As usual, by applying the above inequalities to f = gr and invoking Hölder’s inequality
(see e.g. [24, Section 2]), we can also pass to Lr-Sobolev inequalities with r > 1; we leave the
precise formulation to the interested reader.
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