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BANACH LIMIT IN CONVEXITY AND GEOMETRIC MEANS

FOR CONVEX BODIES

LIRAN ROTEM

(Communicated by Leonid Polterovich)

Abstract. In this note we construct Banach limits on the class of sequences

of convex bodies. Surprisingly, the construction uses the recently introduced
geometric mean of convex bodies. In the opposite direction, we explain how

Banach limits can be used to construct a new variant of the geometric mean

that has some desirable properties.

1. Introduction: Geometric means of convex bodies

We begin by fixing basic notation (for more background in convexity the reader
may consult [9]). We denote by Kn(0) the class of compact convex sets K ⊆ Rn such

that 0 belongs to the interior of K. For K ∈ Kn(0) its support function hK : Rn →
(0,∞) is defined by hK(θ) = supx∈K 〈x, θ〉. The set Kn(0) has a natural structure of

a cone, with addition being the Minkowski addition

K + T = {x+ y : x ∈ K, y ∈ T} ,
and multiplication by scalar λ > 0 being given by the dilation

λK = {λx : x ∈ K} .
We put on Kn(0) the Hausdorff metric, defined by

dH(K,T ) = min {t > 0 : K ⊆ T + tBn2 and T ⊆ K + tBn2 }
= max
θ∈Sn−1

|hK(θ)− hT (θ)| .

Here Bn2 denotes the unit Euclidean ball, and Sn−1 denotes its boundary, the unit
sphere. Whenever we talk about continuity or convergence in Kn(0), we will implicitly

equip Kn(0) with this metric. The metric space Kn(0) is “almost” complete – every

Cauchy sequence {Km} ⊆ Kn(0) converges to a compact convex set K, but we may

have K /∈ Kn(0) if 0 is not in the interior of K.

For K ∈ Kn(0) the polar body K◦ ∈ Kn(0) is defined by

K◦ = {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K} .
The polarity map K 7→ K◦ is a “duality” on Kn(0), in the following formal sense:
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• It is order reversing: If K ⊆ T then K◦ ⊇ T ◦.
• It is an involution: (K◦)

◦
= K.

In fact, the polarity map is essentially the only duality on Kn(0), as we see from the

following theorem:

Theorem 1. Assume T : Kn(0) → K
n
(0) is an order reversing involution. Then

there exists an invertible symmetric linear transformation B ∈ GL(n) such that
TK = BK◦ for all K ∈ Kn(0).

On the class Kn(0), this theorem was proved by Böröczky and Schneider [2].

Similar results on different classes of convex bodies were proved by Artstein-Avidan
and Milman [1], and can be deduced from the work of Gruber [3].

The structure of an ordered cone with a duality transform appears often in
mathematics, including in less geometric settings. The simplest example is the
positive real numbers R+ themselves, with the usual addition, multiplication and
order, and with the inversion x 7→ 1

x as a duality. Another algebraic example is the
class Mn

+ of n× n positive-definite matrices. Here the addition and multiplication
by scalar are the obvious choices, and the order is the matrix order �, that is,
M1 � M2 if M2 − M1 is positive definite. The duality is the matrix inversion
M 7→M−1.

It turns out that there are surprising similarities between the algebraic classes
of numbers and matrices and the geometric class of convex bodies. Thinking of the
polar body K◦ as the “inverse” K−1 is often a good way to conjecture new results in
convexity. Of course, once conjectured, these results should still be proved. In this
note we will focus on one manifestation of this phenomenon: the geometric mean
of convex bodies. We refer the reader to [7] and [8] for more interesting examples.

To explain the construction of the geometric mean of convex bodies, we first
consider real numbers. For every x, y > 0 we define

a0 = x h0 = y

an+1 =
an + hn

2
hn+1 =

(
a−1n + h−1n

2

)−1
.

It is easy to prove that lim
n→∞

an = lim
n→∞

hn =
√
xy. A similar construction is known

for positive definite matrices (see, e.g., [4] for a survey on the geometric mean of
matrices).

Since the process above only uses addition and inversion, we may repeat it on
the class of convex bodies. For K,T ∈ Kn(0) we define

A0 = K H0 = T

An+1 =
An +Hn

2
Hn+1 =

(
A◦n +H◦n

2

)◦
.

(1.1)

The following simple theorem is taken from [6]:

Theorem 2. Fix K,T ∈ Kn(0) and define sequences {An} and {Hn} according

to (1.1). Then {An} is decreasing, {Hn} is increasing, and the limits lim
n→∞

An and

lim
n→∞

Hn exist and are equal.

The joint limit from the previous theorem is called the geometric mean of K and
T and is denoted by g(K,T ). Let us list some properties of the geometric mean:
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Proposition 3.

(1) g(K,K) = K.
(2) g is symmetric in its arguments: g(K,T ) = g(T,K).
(3) g is monotone in its arguments:

if K1 ⊆ K2 and T1 ⊆ T2 then g(K1, T1) ⊆ g(K2, T2).
(4) g is continuous in its arguments.
(5) g satisfies the harmonic–geometric–arithmetic mean inequality(

K◦ + T ◦

2

)◦
⊆ g(K,T ) ⊆ K + T

2
.

(6) [g(K,T )]
◦

= g (K◦, T ◦).
(7) g(K,K◦) = Bn2 .
(8) For any linear map u we have g(uK, uT ) = u (g(K,T )).

In particular g(λK, λT ) = λg(K,T ).

All of the above properties were proved in [6], with the exception the continuity
property (4). We will now prove that this property follows from the others:

Proof. Assume Km → K and Tm → T for some K,T ∈ Kn(0). It follows that there

exist r,R > 0 such that rBn2 ⊆ Km, Tm ⊆ RBn2 for all m, and then we also have
rBn2 ⊆ K,T ⊆ RBn2 . By properties (3) and (1) of the geometric mean we see that
rBn2 ⊆ g(K,T ) ⊆ RBn2 and rBn2 ⊆ g(Km, Tm) ⊆ RBn2 for all m.

For a fixed m, let d denote the maximum of dH (Km,K) and dH (Tm, T ). It
follows that

Km ⊆ K + d ·Bn2 ⊆ K +
d

r
K =

(
1 +

d

r

)
K,

and similarly Tm ⊆
(
1 + d

r

)
T . Hence

g (Km, Tm) ⊆ g
((

1 + d
r

)
K,
(
1 + d

r

)
T
)

=
(
1 + d

r

)
g(K,T ) ⊆ g(K,T ) + dRr ·B

n
2 ,

where we used properties (3) and (8) of the geometric mean. Repeating the same
argument with the roles of Km, Tm and K,T reversed, we conclude that

dH (g (Km, Tm) , g (K,T )) ≤ R

r
·max {dH (Km,K) , dH (Tm, T )} .

Letting m→∞ we see that g(Km, Tm)→ g(K,T ), so g is continuous. �

One natural property we would expect the geometric mean to satisfy is the
scaling property g (αK, βT ) =

√
αβg(K,T ). Unfortunately, it turns out that in

general this is simply false. A 2-dimensional counterexample was computed by
Alexander Magazinov and appears in the appendix of [6]. In fact, in Magazinov’s
example the body g (αK, βT ) is not even homothetic to g(K,T ).

In section 3 we will construct a modification of g that satisfies all the properties
from Proposition 3 and has the scaling property. Before we do so however, we will
develop in Section 2 the notion of Banach limits for sequences of convex bodies.
As we will see, there is a surprising relation between geometric means and Banach
limits.
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2. Banach limits

In this section we will discuss the construction of a Banach limit for sequences
of convex bodies. At first this section may appear to be completely unrelated to
the previous section, but the connection with the geometric mean will soon become
apparent.

Let us begin by recalling the classical definition of a Banach limit. As usual, we
denote by `∞ the space of all bounded sequences of real numbers. Informally, a
Banach limit is a way to assign a “limit” to every sequence {am} ∈ `∞, in a way
that is linear and shift invariant. More formally we have the following theorem:

Theorem 4. There exists a linear functional LIM : `∞ → R such that

(1) LIM is shift invariant: LIM ({am}) = LIM ({am+1}).
(2) For every {am} we have lim infm→∞ am ≤ LIM ({am}) ≤ lim supm→∞ am.

In particular, for convergent sequences LIM agrees with the standard limit.
(3) If am ≥ bm for all m then then LIM ({am}) ≥ LIM ({bm}).

For a proof of this theorem see, e.g., Section 4.2 of [5]. The functional LIM is
called a Banach limit on `∞. Since the proof of the theorem uses the Hahn-Banach
theorem, LIM is highly non-constructive and non-unique.

Now we turn our attention to convex bodies. Let us denote by BKn the space
of uniformly bounded sequences of convex bodies. More explicitly,

BKn =

{
{Km}∞m=1 :

There exists r,R > 0 such that
r ·Bn2 ⊆ Km ⊆ R ·Bn2 for all m

}
.

For the next theorem the existence of the lower bound r ·Bn2 is not important; only
the existence of the upper bound R ·Bn2 is. However, the uniform lower bound will
be crucial later.

The following theorem ensures the existence of a certain functional, which we
call a linear Banach limit on convex bodies.

Theorem 5. There exists a map L : BKn → Kn(0) with the following properties:

(1) L is shift invariant: L ({Km}) = L ({Km+1}) .
(2) If Km → K in the Hausdorff metric then L ({Km}) = K.
(3) If Km ⊇ Tm for all m then L ({Km}) ⊇ L ({Tm}).
(4) For any invertible linear map u we have L ({uKm}) = uL ({Km}).
(5) L ({λKm}) = λL ({Km}) for all λ > 0.
(6) L ({Km + Tm}) = L ({Km}) + L ({Tm}).

Of course, the reason we call L linear is because it satisfies properties (5) and (6).
Like the situation for sequences of numbers, L is highly non-unique.

Proof. We fix a standard Banach limit LIM on `∞. For every sequence {Kn} ⊆ BKn
we define K = LIM ({Kn}) implicitly by the relation

hK(θ) = LIM ({hKn
(θ)}) .

First we need to check that this indeed defines a convex body: we have

hK(αθ + βη) = LIM ({hKn(αθ + βη)})
≤ LIM ({αhKn

(θ) + βhKn
(η)})

= αLIM ({hKn
(θ)}) + βLIM ({hKn

(η)}) = αhK(θ) + βhK(θ),
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where we used both the monotonicity and the linearity of LIM. Hence the body K
is indeed well defined.

Properties (1), (3), (5), and (6) are obvious from the corresponding properties of
LIM. For (2) we also need to remember that if Kn → K in the Hausdorff distance
then in particular hKn

(θ)→ hK(θ) for all θ. Finally, (4) is easily proved if we recall
that huKn

(θ) = hKn
(utθ) and that the support function defines the convex body

uniquely. �

For applications in convexity, and in particular for the application we have
in mind, we would like our Banach limit to respect the notion of polarity. In
other words, we would like to have L ({K◦m}) = L ({Km})◦ for any sequence
{Km} ∈ BKn. Unfortunately, it turns out that polarity was not mentioned in The-
orem 5 for a good reason – one cannot add this assumption to the theorem.

To see that this is the case, assume that L : BKn → Kn(0) satisfies properties (1),

(2) and (6). For any A,B ∈ Kn(0) let us denote

K = L ({A,B,A,B,A,B, . . .}) .

By (1) we also have K = L ({B,A,B,A,B,A, . . .}), and then by (6) and (2) we
have

2K = L ({A+B,B +A,A+B,B +A, . . .}) = A+B,

so K = A+B
2 . In particular, if we take B = A◦ then

L ({A◦, A,A◦, A,A◦, A . . .}) = L ({A,A◦, A,A◦, A,A◦ . . .}) =
A+A◦

2
.

Since for A 6= Bn2 we have
(
A+A◦

2

)◦ 6= A+A◦

2 , we see that the property L ({K◦m}) =

L ({Km})◦ is not satisfied.
So, if we want our Banach limits to respect polarity, we must give up on one of

their other properties. Properties (1) and (2) are crucial for our intuition for what a
Banach limit is, and we do not want to remove them. Perhaps surprisingly, however,
it turns out the additivity property (6) is not so important for us. Removing it, we
may arrive at the following theorem:

Theorem 6. There exists a map L̃ : BKn → Kn(0) satisfying properties (1)-(5) of

Theorem 5 together with

(6’) L̃ ({K◦m}) = L̃ ({Km})◦ .

We call L̃ a geometric Banach limit on BKn.

Proof. Fix a linear Banach limit L on BKn, and define

L̃ ({Km}) = g
(
L ({Km}) , L ({K◦m})

◦)
,

where g is the geometric mean.
The fact that (1) remains true is obvious, and the continuity property (2) holds

because L, g, and the polarity map are all continuous. Similarly, (3) holds because
g is monotone, (4) holds because g is linear equivariant, and (5) is a special case
of (4).
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Finally, for (6’), we have

L̃ ({K◦m}) = g
(
L ({K◦m}) , L ({K◦◦m })

◦)
= g

(
L ({K◦◦m })

◦
, L ({K◦m})

)
= g

(
L ({Km})◦ , L ({K◦m})

◦◦)
= g

(
L ({Km}) , L ({K◦m})

◦)◦
= L̃ ({Km})◦ . �

Notice the surprising use of the geometric mean g in a theorem that did not
mention means anywhere in its formulation.

Remark 7. As an example of the difference between the linear and the geometric
Banach limit, fix two convex bodies A,B ∈ Kn(0) and consider the periodic sequence

{A,B,A,B,A,B, . . .}. For the linear Banach limit we already saw that

L ({A,B,A,B, . . .}) =
A+B

2
.

For the geometric Banach limit constructed in Theorem 6, however, the same se-
quence will converge to the geometric mean:

L̃ ({A,B,A,B, . . .}) = g

(
A+B

2
,

(
A◦ +B◦

2

)◦)
= g(A,B).

Of course, one may also construct a Banach limit for which the sequence {A, B, A,
B, A, B, . . .} converges to the harmonic mean of A and B (but will not satisfy the
polarity property and will not be linear with respect to the Minkowski addition).

In the next section we will need to use Banach limits not just for sequences
but for functions as well. The following variant of Theorem 4 appears in [5] as an
exercise:

Theorem 8. Denote by B(R) the space of bounded functions f : R → R. There
exists a linear functional LIM : B(R)→ R such that

(1) LIM is shift invariant: If for f ∈ B(R) and v ∈ R we define fv(t) = f(t+v),
then LIM (f) = LIM (fv).

(2) For every f we have lim inft→∞ f(t) ≤ LIM (f) ≤ lim supt→∞ f(t).
(3) If f(t) ≥ g(t) for all x ∈ R then LIM (f) ≥ LIM (g).

Notice that our Banach limit is “at +∞,” meaning it agrees with limt→∞ f(t)
whenever this limit exists. One may similarly talk about Banach limits “at −∞,”
or even at a finite point t0 ∈ R. Since we will not use such functionals, we use the
convention that “Banach limit” always means “Banach limit at +∞.”

By using Theorem 8 instead of Theorem 4, one can also build Banach limits for
body-valued functions. To be more exact, let us write

Fn =

{
f : R→ Kn(0) :

There exists r,R > 0 such that
r ·Bn2 ⊆ f(t) ⊆ R ·Bn2 for all t

}
.

Then one may construct a linear Banach limit L : Fn → Kn(0) satisfying the obvious

analogues of properties (1)-(6) from Theorem 5. Similarly, one may construct a
geometric Banach limit L : Fn → Kn(0) satisfying the properties (1)-(5) and (6’).
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3. A modified geometric mean

In the previous section we used the geometric mean of convex bodies in order to
build the new notion of a geometric Banach limit. We will now do the opposite and
use the newly constructed geometric Banach limit in order to build a new variant
of the geometric mean. This new construction will share all the nice properties of
the original geometric mean, but it will also have the scaling property. Here is the
relevant definition:

Definition 9. Fix a geometric Banach limit L : Fn → Kn(0). Given K,T ∈ Kn(0),
we define a function fK,T ∈ Fn by

fK,T (t) = g
(
etK, e−tT

)
.

We now define the Banach geometric meanG(K,T ) byG(K,T ) = g
(
LfK,T , LfT,K

)
.

In order to show that the Banach geometric mean is well-defined, we need to
prove that indeed fK,T ∈ Fn for all K,T ∈ Kn(0). To show this, fix r,R > 0 such

that rBn2 ⊆ K,T ⊆ RBn2 and notice that

fK,T (t) = g
(
etK, e−tT

)
⊆ g
(
etRBn2 , e

−tRBn2
)

= R · g
(
etBn2 , (e

tBn2 )◦
)

= R ·Bn2 .

Similarly fK,T (t) ⊇ rBn2 , so fK,T ∈ Fn and G is well-defined.
It appears as though the construction of G(K,T ) depends crucially on the choice

of a geometric Banach limit. We will soon see that this is not the case, and in fact
one may define G(K,T ) in a more constructive way. Let us begin, however, by
stating the main properties of this construction:

Theorem 10. The body G(K,T ) satisfies the following properties:

(1) G(K,K) = K.
(2) G is symmetric in its arguments: G(K,T ) = G(T,K).
(3) G is monotone in its arguments:

if K1 ⊆ K2 and T1 ⊆ T2 then G(K1, T1) ⊆ G(K2, T2).
(4) G is continuous in its arguments.
(5) G satisfies the harmonic–geometric–arithmetic mean inequality(

K◦ + T ◦

2

)◦
⊆ G(K,T ) ⊆ K + T

2
.

(6) [G(K,T )]
◦

= G (K◦, T ◦).
(7) G(K,K◦) = Bn2 .
(8) For any linear map u we have G(uK, uT ) = u (G(K,T )).
(9) G has the scaling property: G (αK, βT ) =

√
αβG(K,T ).

Proof. (1), (2), (3), (4), (6), and (8) are immediate from the suitable properties of
g and the geometric Banach limit L. (7) is an immediate corollary of (6).

To prove (5), we recall from [6] that if C = g(A,B) then hC(θ) ≤
√
hA(θ)hB(θ)

for every direction θ ∈ Sn−1. It follows that

hfK,T (t)(θ) ≤
√
ethK(θ) · e−thT (θ) =

√
hK(θ)hT (θ) ≤ hK(θ)+hT (θ)

2 = hK+T
2

(θ),

so fK,T (t) ⊆ K+T
2 for every t. By monotonicity of the geometric Banach limit we

also have LfK,T ⊆ K+T
2 . Similarly LfT,K ⊆ K+T

2 , and the right inequality follows.
The left inequality follows from the right one by polarity.
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Finally, we show how the scaling property (9) follows from the translation in-
variance of L. Write α = eu and β = ev for some u, v ∈ R. If we write w = u+v

2

and z = u−v
2 then

fαK,βT (t) = g
(
et+uK, e−t+vT

)
= ewg

(
et+zK, e−t−zT

)
= ew · fK,T (t+ z) .

Since L is homogeneous and shift invariant we have

LfαK,βT = ewLfK,T =
√
αβLfK,T .

In the same way, LfβT,αK =
√
αβLfT,K , so

G (αK, βT ) = g (LfαK,βT , LfβT,αK) = g
(√

αβLfK,T ,
√
αβLfT,K

)
=
√
αβg (LfK,T , LfT,K) =

√
αβG(K,T )

as we wanted. �

We now want to understand the dependence of G on the choice of a geometric
Banach limit. We will need the following results on Banach limits for real-valued
functions:

Lemma 11. Let g : R → R be continuous and periodic with period P > 0. Then
for every Banach limit LIM : B (R)→ R one has

LIM (g) =
1

P

∫ P

0

g(t)dt.

Proof. Define a sequence {gn}∞n=1 by

gn(t) =
1

n

n−1∑
i=0

g

(
t+

i

n
P

)
.

Since LIM is linear and shift-invariant, we have LIM (gn) = LIM (g) for all n.
Since g is continuous and periodic, it is uniformly continuous. Hence for every

ε > 0 there exists a δ > 0 such that if |t− s| < δ then |g(t)− g(s)| < ε. In
particular, we see that if n > P

δ then for every t ∈ R we have∣∣∣∣∣gn(t)− 1

P

∫ P

0

g(s)ds

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n−1∑
i=0

g

(
t+

i

n
P

)
− 1

P

∫ t+P

t

g(s)ds

∣∣∣∣∣
=

∣∣∣∣∣ 1

P

n−1∑
i=0

∫ t+ i+1
n P

t+ i
nP

(
g

(
t+

i

n
P

)
− g(s)

)
ds

∣∣∣∣∣
≤ 1

P

n−1∑
i=0

∫ t+ i+1
n P

t+ i
nP

∣∣∣∣g(t+
i

n
P

)
− g(s)

∣∣∣∣ ds
≤ 1

P

n−1∑
i=0

∫ t+ i+1
n P

t+ i
nP

εds = ε.

In other words, we proved that the sequence {gn} converges uniformly to the con-

stant 1
P

∫ P
0
g. Hence

1

P

∫ P

0

g = lim
n→∞

LIM (gn) = LIM (g)

as we wanted. �
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Proposition 12. Let f : R → R be continuous, and assume limm→∞ f (t+mP )
exists uniformly in t ∈ [0, P ]. Then for every Banach limit LIM : B (R) → R one
has

LIM (f) =
1

P

∫ P

0

(
lim
m→∞

f (t+mP )
)
dt.

Proof. First observe that if limm→∞ f (t+mP ) exists uniformly in t ∈ [0, P ] then
the limit exists for all t ∈ R, and the convergence is uniform on every ray of the
form [a,∞).

In particular if we define fm(t) = f(t+mP ) and g(t) = limm→∞ fm(t) then

LIM (f) = lim
m→∞

LIM (fm) = LIM (g) .

Since the function g is periodic with period P we get from the previous lemma that

LIM(f) = LIM(g) =
1

P

∫ P

0

g,

which is what we wanted to prove. �

From Proposition 12 we immediately obtain the same result for convex body
valued functions:

Corollary 13. Let f : R → Kn(0) be continuous, and assume limm→∞ f (t+mP )

exists uniformly in t ∈ [0, P ]. Then for every linear Banach limit L : Fn → Kn(0)
one has

L (f) =
1

P

∫ P

0

(
lim
m→∞

f (t+mP )
)
dt.

The integral on the right hand side should be interpreted as a Minkowski integral:

K =
∫ b
a
f(t)dt just means that for every direction θ one has hK(θ) =

∫ b
a
hf(t)(θ)dt.

In order to use Corollary 13, we need to prove its main assumption is satisfied
in our case. We do so in the following theorem:

Theorem 14. Fix K,T ∈ Kn(0). Then the limit

lim
m→∞

g

(
2mαK,

1

2mα
T

)
(taken over integer values of m) exists uniformly in α ∈ [1,∞).

Of course, the convergence is uniform not only in the interval [1,∞) but also in
the interval [α0,∞) for every α0 > 0.

Proof. Write Zm(α) = g
(
2mαK, 1

2mαT
)
. Following one step of the iteration process

defining the geometric mean we also have

Zm(α) = g

(
2mαK + 1

2mαT

2
,

( 1
2mαK

◦ + 2mαT ◦

2

)◦)
.

Fix a number R1 such that T ⊆ R1 · K, or equivalently K◦ ⊆ R1 · T ◦. Then we
have

2m−1αK ⊆
2mαK + 1

2mαT

2
⊆

2mαK + R1

2mαK

2

=

(
1 +

R1

22mα2

)
2m−1αK ⊆

(
1 +

R1

22m

)
2m−1αK.
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In exactly the same way, we see that

2m−1αT ◦ ⊆
1

2mαK
◦ + 2mαT ◦

2
⊆
(

1 +
R1

22m

)
2m−1αT ◦,

which after duality is equivalent to

1

1 + R1

22m

· 1

2m−1α
T ⊆

( 1
2mαK

◦ + 2mαT ◦

2

)◦
⊆ 1

2m−1α
T.

It follows that we have

Zm(α) ⊆ g
((

1 +
R1

22m

)
2m−1αK,

1

2m−1α
T

)
⊆
(

1 +
R1

22m

)
g

(
2m−1αK,

1

2m−1α
T

)
=

(
1 +

R1

22m

)
Zm−1(α),

and similarly

Zm(α) ⊇
(

1 +
R1

22m

)−1
· Zm−1(α).

In order to pass from these inclusions to the Hausdorff distance, we need to choose a
number R2 large enough to have K,T ⊆ R2·Bn2 , which implies that Zm(α) ⊆ R2·Bn2
for all m and all α. Hence

Zm(α) ⊆ Zm−1(α) +
R1R2

22m
Bn2

and

Zm−1(α) ⊆ Zm(α) +
R1R2

22m
Bn2 ,

so we have the uniform estimate dH (Zm−1(α), Zm(α)) ≤ R1R2

22m . Since
∑∞
m=1

R1R2

22m

converges, it follows that {Zm(α)} is uniformly Cauchy.
It follows that Zm(α)→ Z(α) uniformly in α ∈ [1,∞). We do not know a priori

that Z(α) ∈ Kn(0), as it may have an empty interior. However, if we choose ε > 0

such that K,T ⊇ ε ·Bn2 then Zm(α) ⊇ εBn2 for all m and all α, which implies that
Z(α) ⊇ εBn2 . Hence Z(α) ∈ Kn(0), and the proof is complete. �

Putting everything together, we have the following result, which shows that the
construction ofG(K,T ) can be written explicitly without referring to Banach limits:

Proposition 15. For K,T ∈ Kn(0), define fK,T ∈ Fn by fK,T (t) = g(etK, e−tT ) .

Then for every linear Banach limit on Fn one has

LfK,T =

∫ 1

0

(
lim
m→∞

g
(
2m+tK, 2−m−tT

))
dt.

Proof. We will check that the condition of Corollary 13 is satisfied with P = ln 2.
Indeed,

lim
m→∞

fK,T (t+m ln 2) = lim
m→∞

g
(
2metK, 2−me−tT

)
,

and the existence of this limit is ensured by Theorem 14. Furthermore, by the same
theorem the limit is uniform in t as long as et ≥ 1, or equivalently t ∈ [0,∞). Hence
we may apply Corollary 13 and deduce that

LfK,T =
1

ln 2

∫ ln 2

0

(
lim
m→∞

g
(
2metK, 2−me−tT

))
dt.

The change of variables t = s ln 2 gives the result. �
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