A sharp Blaschke-Santaló inequality for α-concave functions

Liran Rotem

the date of receipt and acceptance should be inserted later

Abstract

We define a new transform on α-concave functions, which we call the \sharp transform. Using this new transform, we prove a sharp Blaschke-Santaló inequality for α-concave functions, and characterize the equality case. This extends the known functional Blaschke-Santaló inequality of Artstein-Avidan, Klartag and Milman, and strengthens a result of Bobkov.

Finally, we prove that the \sharp-transform is a duality transform when restricted to its image. However, this transform is neither surjective nor injective on the entire class of α-concave functions.

Keywords Blaschke-Santaló inequality • convexity • α-concavity \log-concavity
Mathematics Subject Classification (2010) 52A40 • 26B25

1 Blaschke-Santaló type inequalities

We begin by recalling the classic Blaschke-Santaló inequality. A convex body in \mathbb{R}^{n} is compact, convex set with non-empty interior. Such a convex body K is called symmetric if $K=-K$. We will denote by $|K|$ the (Lebesgue) volume of K. Finally, we define the polar body of K to be

$$
K^{\circ}=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1 \text { for all } y \in K\right\},
$$

where $\langle\cdot, \cdot\rangle$ is the standard scalar product on \mathbb{R}^{n}.
Polarity is a basic notion in convex geometry. It is easy to see that if K is symmetric, convex body, then so is K°. The map $K \mapsto K^{\circ}$ satisfies two fundamental properties:

1. It is order reversing: If $K_{1} \subseteq K_{2}$, then $K_{1}^{\circ} \supseteq K_{2}^{\circ}$.
2. It is an involution: For every symmetric convex body K we have $K=\left(K^{\circ}\right)^{\circ}$.
[^0]These two properties say that polarity is a duality transform (see, e.g., [2]).
The volume of K° is related to the volume of K by the Blaschke-Santaló inequality

Theorem 1 (Blaschke, Santaló) Assume $K \subseteq \mathbb{R}^{n}$ is a symmetric, convex body. Then

$$
|K| \cdot\left|K^{\circ}\right| \leq|D|^{2},
$$

where $D \subseteq \mathbb{R}^{n}$ is the unit Euclidean ball. Furthermore, we have an equality if and only if K is an ellipsoid.

This theorem was proven by Blaschke in dimensions 2 and 3, and Santaló extended the result to arbitrary dimensions. There exists a version of the inequality for nonsymmetric bodies, but for simplicity we will only deal with the symmetric case. The generalized statement, proofs and further references can be found, e.g., in [12].

In [1], Artstein-Avidan, Klartag and Milman prove a functional extension of the Blaschke-Santaló inequality. To explain their result and put it in perspective, we will need to define α-concave functions:

Definition 1 Fix $-\infty \leq \alpha \leq \infty$. We say that a function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is α-concave if f is supported on some convex set Ω, and for every $x, y \in \Omega$ and $0 \leq \lambda \leq 1$ we have

$$
f(\lambda x+(1-\lambda) y) \geq\left[\lambda f(x)^{\alpha}+(1-\lambda) f(y)^{\alpha}\right]^{\frac{1}{\alpha}} .
$$

We will always assume that f is upper semicontinuous and that

$$
\max _{x \in \mathbb{R}^{n}} f(x)=f(0)=1
$$

(this last condition is sometimes known as saying that f is geometric).
The class of all such α-concave functions will be denoted by $\mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$.
Remember that $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is called upper semicontinuous if its upper level sets $\left\{x \in \mathbb{R}^{n}: f(x) \geq t\right\}$ are closed for all $t \geq 0$.
α-concave functions were first defined by Avriel ([5]), and were studied by Borell ([8],[9]) and by Brascamp and Lieb ([10]). In the case $\alpha=\infty$ we understand the definition in the limiting sense as

$$
f(\lambda x+(1-\lambda) y) \geq \max \{f(x), f(y)\}
$$

This just means that f is constant on its support, so functions in $\mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$ are indicator functions of convex sets, which by our assumptions must also be closed and contain the origin. If we further assume that $f \in \mathrm{C}_{\infty}\left(\mathbb{R}^{n}\right)$ satisfy $0<\int f<\infty$, then f must be the indicator function of a convex body, and we can identify these functions with the convex bodies themselves.

If $\alpha_{1}<\alpha_{2}$, then $\mathrm{C}_{\alpha_{1}}\left(\mathbb{R}^{n}\right) \supseteq \mathrm{C}_{\alpha_{2}}\left(\mathbb{R}^{n}\right)$. This means that we can think of every class of functions $\mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ as extending the class of convex bodies. Originally, this was done for the class $\mathrm{C}_{0}\left(\mathbb{R}^{n}\right)$ of log-concave functions. Again we interpret Definition 1 in the limiting sense, and say that a function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ is log-concave if

$$
f(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} f(y)^{1-\lambda} .
$$

for every $x, y \in \mathbb{R}^{n}$ and $0 \leq \lambda \leq 1$.

Many definitions and theorems of convex geometry were generalized to the class of log-concave functions. Except the usual aspiration for generality, the developed theory helped to prove new deep theorems in convexity and asymptotic geometric analysis. For a survey of such results and their importance, see [16].

One of the first results in this new direction was the functional Santaló theorem. In order to state it we will begin with a convenient definition:

Definition 2 For every $f \in \mathrm{C}_{0}\left(\mathbb{R}^{n}\right)$ we define

$$
f^{*}=\exp (-\mathcal{L}(-\log f)) \in \mathrm{C}_{0}\left(\mathbb{R}^{n}\right)
$$

where \mathcal{L} is the Legendre transform, defined by

$$
(\mathcal{L} \varphi)(x)=\sup _{y \in \mathbb{R}^{n}}(\langle x, y\rangle-\varphi(y)) .
$$

This definition just means that if $f=e^{-\varphi}$ for a convex function φ, then $f^{*}=e^{-\mathcal{L} \varphi}$. It turns out that the map $f \mapsto f^{*}$ is a duality transform on $\mathrm{C}_{0}\left(\mathbb{R}^{n}\right)$, and we have the following theorem:

Theorem 2 Assume $f \in \mathrm{C}_{0}\left(\mathbb{R}^{n}\right)$ is even and $0<\int f<\infty$. Then

$$
\int f \cdot \int f^{*} \leq\left(\int G\right)^{2}=(2 \pi)^{n}
$$

where

$$
G(x)=e^{-\frac{|x|^{2}}{2}} .
$$

Equality occurs if and only if $f=G \circ T$ for an invertible linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
This inequality, in the even case, is originally due to Ball ([6]). In [1], ArtsteinAvidan, Klartag and Milman present this result as a Blaschke-Santaló type inequality, extend the result to the non-even case and characterize the equality case.

As a side note, let us mention that given our current knowledge, the form of Theorem 2 is somewhat surprising. Following a series of works by ArtsteinAvidan and Milman, we now understand that even though the map $f \mapsto f^{*}$ is a duality transform, it is not the correct extension of the classic notion of polarity (see [3]). The correct extension is another duality transform, usually denoted $f \mapsto$ f°, which is based on the so-called \mathcal{A}-transform. Hence we expect the functional Blaschke-Santaló inequality to bound an expression of the form

$$
\begin{equation*}
\int f \cdot \int f^{\circ} \tag{1}
\end{equation*}
$$

which is not what we see in Theorem 2. In fact, a sharp upper bound on (1) is not known, even though an asymptotic result was recently found by Artstein-Avidan and Slomka ([4]).

The goal of this paper is to discuss Blaschke-Santaló inequalities for α-concave functions, for values of α different from 0 . The case $\alpha>0$ was resolved already in [1], so we will assume from now on that $\alpha \leq 0$. The following definition appeared in [17]:

Definition 3 Assume $-\infty<\alpha<0$. The convex base of a function $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ is

$$
\operatorname{base}_{\alpha} f=\frac{1-f^{\alpha}}{\alpha} .
$$

Put differently, $\varphi=\operatorname{base}_{\alpha} f$ is the unique convex function such that

$$
f=\left(1+\frac{\varphi}{\beta}\right)^{-\beta}
$$

Here and after, we use the parameter $\beta=-\frac{1}{\alpha}$. As $\alpha \leq 0$ and $\beta \geq 0$, it is often less confusing to use β instead of α. In the limiting case $\alpha=0$ we define base $_{0}(f)=-\log f$. Using the notion of a convex base we can extend Definition 2 to the general case:

Definition 4 The dual of a function $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ is the function $f^{*} \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ defined by relation

$$
\operatorname{base}_{\alpha}\left(f^{*}\right)=\mathcal{L}\left(\operatorname{base}_{\alpha}(f)\right) .
$$

Note that the operation $*$ depends on α. Remember that if $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ then $f \in \mathrm{C}_{\alpha^{\prime}}\left(\mathbb{R}^{n}\right)$ for all $\alpha^{\prime}<\alpha$. Thinking of f as an element in $\mathrm{C}_{\alpha^{\prime}}\left(\mathbb{R}^{n}\right)$ will yield a different f^{*} than thinking about f as function in $\mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$. Therefore, strictly speaking, we should use a notation like $f^{*_{\alpha}}$. However, this notation is extremely cumbersome, so we will use the simpler notation f^{*}, and keep in mind the implicit dependence on α.

We can now state what appears to be the natural extension of Theorem 2 to the α-concave case:
Theorem 3 Fix $-\frac{1}{n}<\alpha \leq 0$. For every even function $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ such that $0<\int f<\infty$ we have

$$
\begin{equation*}
\int f \cdot \int f^{*} \leq\left(\int H_{\alpha}\right)^{2} \tag{2}
\end{equation*}
$$

where

$$
H_{\alpha}(x)=\left(1+\frac{|x|^{2}}{\beta}\right)^{-\frac{\beta}{2}} \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)
$$

This theorem was proven by Bobkov ([7]) using a general result by Fradelizi and Meyer ([11]), which we will cite in the next section as Theorem 5. The condition $\alpha>-\frac{1}{n}$ is necessary, because the function H_{α} is no longer integrable for $\alpha \leq-\frac{1}{n}$. In fact, it is not hard to check that

$$
\int H_{\alpha} \cdot \int H_{\alpha}^{*} \rightarrow \infty
$$

as $\alpha \rightarrow-\frac{1}{n}$, so it is not possible to find a finite upper bound for $\int f \cdot \int f^{*}$ whenever $\alpha \leq-\frac{1}{n}$. Notice that as $\alpha \rightarrow 0$ the functions H_{α} converge to the Gaussian G, and we obtain Theorem 2 as a special case of Theorem 3.

Surprisingly, as was already observed by Bobkov, Theorem 3 is not sharp when $\alpha<0$. Given the previously described results, it is very natural to expect an equality in (2) when $f=H_{\alpha}$. However, an explicit (yet tedious) calculation shows that $H_{\alpha}^{*}(x)<H_{\alpha}(x)$ for all $x \neq 0$, so

$$
\int H_{\alpha} \cdot \int H_{\alpha}^{*}<\left(\int H_{\alpha}\right)^{2}
$$

In fact, there exists a unique function $G_{\alpha} \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ such that $G_{\alpha}^{*}=G_{\alpha}$, and this function is

$$
G_{\alpha}(x)=\left(1+\frac{|x|^{2}}{2 \beta}\right)^{-\beta}
$$

Notice that in the limiting case $\alpha \rightarrow 0$ we have $H_{0}=G_{0}=G$, but for other values of α these functions are quite different. Inspired by Theorems 1 and 2 , it may seem reasonable to conjecture that

$$
\int f \cdot \int f^{*} \leq\left(\int G_{\alpha}\right)^{2}
$$

for all even $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$. Such an inequality, if true, will obviously be sharp. Unfortunately, this inequality is false for $\alpha<0$. As one possible counterexample, take $f=\mathbf{1}_{D}$, the indicator function of the ball. In this case

$$
f^{*}=\left(1+\frac{|x|}{\beta}\right)^{-\beta}
$$

and a direct computation of the integrals show that this is indeed a counterexample if the dimension n is large enough compared to β (For concreteness, it is enough to take $n=\left\lceil\frac{\beta}{2}\right\rceil$ for all large enough β).

In the next sections we will show the reason inequality (2) is not sharp is that the transform $*$ is not the correct extension of polarity to use in the functional Blaschke-Santaló inequality. In section 2 we will define a new transform on $\mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$, which we call \sharp-transform. We will then use this \sharp-transform to prove a sharp version of Theorem 3. Finally, in section 3, we will discuss further properties of \sharp which are not directly related to the Blaschke-Santaló inequality, and give a geometric interpretation of this transform.

2 A new transform on α-concave functions

In [1], Artstein-Avidan, Klartag and Milman obtain Theorem 2 as the limit of Blaschke-Santaló type inequalities for α-concave functions, $\alpha \geq 0$. Let us warn the reader that [1] uses a slightly different notation than the one used in this paper: an α-concave function in this paper is the same as a $\frac{1}{\alpha}$-concave function in [1], and vice versa.

Inspired by the transforms in [1], we define the following:
Definition 5 For $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ we define

$$
f^{\sharp}(x)=\inf _{y} \frac{1}{f(y) \cdot\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{\beta}}=\frac{1}{\sup _{y}\left[f(y) \cdot\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{\beta}\right]},
$$

where the infimum is taken over all points $y \in \mathbb{R}^{n}$ such that $f(y)>0$ and $\langle x, y\rangle>$ $-\beta$.

Like the $*$ transform, the \sharp transform also depends on α, so in principle we should write $f^{\sharp \alpha}$. Nonetheless, we opt for the simpler notation f^{\sharp}.

Let us begin by checking that $f^{\sharp} \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$:

Proposition 1 For every $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ we have $f^{\sharp} \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$. If f is even, so is f^{\sharp}.

Proof For a fixed $y \in \mathbb{R}^{n}$ with $f(y)>0$ the function

$$
f_{y}(x)= \begin{cases}\frac{1}{f(y)} \cdot\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{-\beta} & \text { if }\langle x, y\rangle>-\beta \\ \infty & \text { otherwise }\end{cases}
$$

is upper semicontinuous and α-concave (except the fact it can attain the value $+\infty$, which we usually exclude from the definition). Now we can write

$$
f^{\sharp}(x)=\inf _{y: f(y)>0} f_{y}(x),
$$

so f^{\sharp} is α-concave as the infimum of a family of α-concave functions. Similarly f^{\sharp} is upper semicontinuous, as the infimum of a family of upper semicontinuous functions.

For every $x \in \mathbb{R}^{n}$ we have

$$
f^{\sharp}(x)=\inf _{y} \frac{1}{f(y) \cdot\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{\beta}} \leq \frac{1}{f(0)\left(1+\frac{\langle x, 0\rangle}{\beta}\right)^{\beta}}=1 .
$$

Additionally,

$$
f^{\sharp}(0)=\inf _{y} \frac{1}{f(y)\left(1+\frac{\langle 0, y\rangle}{\beta}\right)_{+}^{\beta}}=\inf _{y} \frac{1}{f(y)}=\frac{1}{\sup _{y} f(y)}=1 .
$$

and we see that f^{\sharp} is geometric. Hence we have $f^{\sharp} \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ like we wanted.
Finally if f is even then

$$
\begin{aligned}
f^{\sharp}(-x) & =\inf _{y} \frac{1}{f(y) \cdot\left(1+\frac{\langle-x, y\rangle}{\beta}\right)^{\beta}}=\inf _{y} \frac{1}{f(-y) \cdot\left(1+\frac{\langle-x,-y\rangle}{\beta}\right)^{\beta}}, \\
& =\inf _{y} \frac{1}{f(y) \cdot\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{\beta}}=f^{\sharp}(x),
\end{aligned}
$$

so f^{\sharp} is even as well.
Our main goal in this section is to prove the following theorem:
Theorem 4 Fix $-\frac{1}{n}<\alpha \leq 0$. For every even $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ such that $0<\int f<\infty$ we have

$$
\int f \cdot \int f^{\sharp} \leq\left(\int H_{\alpha}\right)^{2},
$$

with equality if and only if $f=H_{\alpha} \circ T$ for an invertible linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Here we have $H_{\alpha}(x)=\left(1+\frac{|x|^{2}}{\beta}\right)^{-\frac{\beta}{2}}$, just like in Theorem 3 of Bobkov. For $\alpha \leq-\frac{1}{n}$ one cannot hope for a finite upper bound on the product $\int f \cdot \int f^{\sharp}$. This can be seen by choosing $f=H_{\alpha}$, and considering the following proposition:

Proposition $2 H_{\alpha}^{\sharp}=H_{\alpha}$, and H_{α} is the only function with this property.
Proof First we calculate H_{α}^{\sharp} explicitly and show that $H_{\alpha}^{\sharp}=H_{\alpha}$. By definition,

$$
\begin{aligned}
H_{\alpha}^{\sharp}(x) & =\left[\sup _{y} H_{\alpha}(y)\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{\beta}\right]^{-1} \\
& =[\sup _{y} \underbrace{\left(1+\frac{|y|^{2}}{\beta}\right)^{-\frac{\beta}{2}}\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{\beta}}_{(\star)}]^{-1}
\end{aligned}
$$

Notice that if we take a vector y and rotate it to have the same direction as x, we can only increase the expression (\star). Hence

$$
\begin{aligned}
H_{\alpha}^{\sharp}(x) & =\left[\sup _{\lambda>0}\left(1+\frac{|\lambda x|^{2}}{\beta}\right)^{-\frac{\beta}{2}}\left(1+\frac{\langle x, \lambda x\rangle}{\beta}\right)^{\beta}\right]^{-1} \\
& =\left[\sup _{\lambda>0} \frac{\left(1+\frac{\lambda|x|^{2}}{\beta}\right)^{2}}{1+\frac{\lambda^{2}|x|^{2}}{\beta}}\right]^{-\frac{\beta}{2}} .
\end{aligned}
$$

It is now an exercise in calculus to differentiate and check that the supremum is actually a maximum, which is obtained for $\lambda=1$. Hence

$$
H_{\alpha}^{\sharp}(x)=\left[\frac{\left(1+\frac{|x|^{2}}{\beta}\right)^{2}}{1+\frac{|x|^{2}}{\beta}}\right]^{-\frac{\beta}{2}}=\left(1+\frac{|x|^{2}}{\beta}\right)^{-\frac{\beta}{2}}=H_{\alpha}(x)
$$

which is what we needed to show.
Now assume that $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ is any function such that $f^{\sharp}=f$. For every $x \in \mathbb{R}^{n}$ with $f(x)>0$ we have

$$
f(x)=f^{\sharp}(x)=\inf _{y} \frac{1}{f(y) \cdot\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{\beta}} \leq \frac{1}{f(x) \cdot\left(1+\frac{|x|^{2}}{\beta}\right)^{\beta}},
$$

so multiplying by $f(x)$ and taking a square root we get $f(x) \leq H_{\alpha}(x)$. If $f(x)=0$ then $f(x) \leq H_{\alpha}(x)$ holds trivially, so the inequality is true for all $x \in \mathbb{R}^{n}$.

It is obvious from the definition that \sharp is order reversing, so we may apply it on both sides and obtain

$$
f=f^{\sharp} \geq H_{\alpha}^{\sharp}=H_{\alpha},
$$

so $f=H_{\alpha}$ like we wanted.
Theorem 4, like Theorem 3, will follow from a general result of Fradelizi and Meyer ([11]). We state their result here:

Theorem 5 Let $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$and $\rho: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be measurable functions, such that

$$
f_{1}(x) f_{2}(y) \leq \rho^{2}(\langle x, y\rangle)
$$

for every $x, y \in \mathbb{R}^{n}$ such that $\langle x, y\rangle>0$. If, additionally, f_{1} is even, then

$$
\int f_{1} \cdot \int f_{2} \leq\left(\int \rho\left(|x|^{2}\right) d x\right)^{2}
$$

Assume further that ρ is continuous. Then equality will occur if and only if:

1. $\sqrt{\rho(s) \rho(t)} \leq \rho(\sqrt{s t})$ for every $s, t \geq 0$.
2. If $n \geq 2$ then either $\rho(0)>0$ or $\rho \equiv 0$.
3. There exists a positive definite matrix T and a constant $d>0$ such that

$$
f_{1}(x)=d \cdot \rho\left(|T x|^{2}\right), \quad f_{2}(x)=\frac{1}{d} \cdot \rho\left(\left|T^{-1} x\right|^{2}\right)
$$

almost everywhere.
Let us use this result to prove Theorem 4:
Proof (Proof of Theorem 4) Define a function $\rho: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$by

$$
\rho(t)=\left(1+\frac{t}{\beta}\right)^{-\beta / 2} .
$$

Fix $x, y \in \mathbb{R}^{n}$ with $\langle x, y\rangle>0$. If $f(x)=0$ then obviously $f(x) f^{\sharp}(y) \leq$ $\rho^{2}(\langle x, y\rangle)$. If, on the other hand, $f(x)>0$ then

$$
\begin{aligned}
f(x) \cdot f^{\sharp}(y) & =\inf _{z} \frac{f(x)}{f(z) \cdot\left(1+\frac{\langle y, z\rangle}{\beta}\right)_{+}^{\beta}} \leq \frac{f(x)}{f(x) \cdot\left(1+\frac{\langle y, x\rangle}{\beta}\right)^{\beta}} \\
& =\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{-\beta}=\rho^{2}(\langle x, y\rangle) .
\end{aligned}
$$

From Theorem 5 we conclude that indeed

$$
\int f \cdot \int f^{\sharp} \leq\left(\int \rho\left(|x|^{2}\right) d x\right)^{2}=\left(\int H_{\alpha}\right)^{2} .
$$

Next we analyze the equality case. From Theorem 5 we see that a necessary condition to have equality is

$$
f(x)=d \cdot \rho\left(|T x|^{2}\right)=d \cdot H_{\alpha}(T x)
$$

for a constant $d>0$ and a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (which we may take to be positive definite if we want). Since $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ we know that

$$
1=f(0)=d \cdot H_{\alpha}(0)=d \cdot 1=d,
$$

so we must have $f=H_{\alpha} \circ T$.

To see that this condition is also sufficient, notice that for every $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ and every invertible linear map T we have

$$
\begin{aligned}
(f \circ T)^{\sharp}(x) & =\left[\sup _{y} f(T y)\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{\beta}\right]^{-1}=\left[\sup _{y} f(y)\left(1+\frac{\left\langle x, T^{-1} y\right\rangle}{\beta}\right)^{\beta}\right]^{-1} \\
& =\left[\sup _{y} f(y)\left(1+\frac{\left\langle\left(T^{-1}\right)^{*} x, y\right\rangle}{\beta}\right)^{\beta}\right]^{-1}=f^{\sharp}\left(\left(T^{-1}\right)^{*} x\right) .
\end{aligned}
$$

Using a simple change of variables and Proposition 2 we get that if $f=H_{\alpha} \circ T$ then

$$
\begin{aligned}
\int f \cdot \int f^{\sharp} & =\int\left(H_{\alpha} \circ T\right) \cdot \int\left(H_{\alpha}^{\sharp} \circ\left(T^{-1}\right)^{*}\right) \\
& =\frac{1}{\operatorname{det}(T) \cdot \operatorname{det}\left(\left(T^{-1}\right)^{*}\right)} \int H_{\alpha} \int H_{\alpha}^{\sharp}=\left(\int H_{\alpha}\right)^{2}
\end{aligned}
$$

so we are done.

Remark 1 For simplicity, Theorem 4 is only stated for even functions. Fradelizi and Meyer also proved in [11] a generalization of Theorem 5 for non-even functions, which can be used to extend Theorem 4 to the non-even case. The proof remains essentially the same, so we leave the details to the interested reader.

To conclude this section, let us compare Theorem 4 with Theorem 3. We have the following proposition:

Proposition 3 For every $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ we have $f^{\sharp} \geq f^{*}$.
Proof Denote $\varphi=\operatorname{base}_{\alpha}(f)$. We need to prove that for every $x \in \mathbb{R}^{n}$ we have $f^{\sharp}(x) \geq f^{*}(x)$, which is equivalent to

$$
\inf _{y}\left(\frac{1+\frac{\langle x, y\rangle}{\beta}}{1+\frac{\varphi(y)}{\beta}}\right)^{-\beta} \geq \inf _{y}\left(1+\frac{\langle x, y\rangle-\varphi(y)}{\beta}\right)^{-\beta} .
$$

Choose a sequence $\left\{y_{n}\right\}$ such that

$$
\left(\frac{1+\frac{\left\langle x, y_{n}\right\rangle}{\beta}}{1+\frac{\varphi\left(y_{n}\right)}{\beta}}\right)^{-\beta} \rightarrow f^{\sharp}(x) .
$$

We claim it is always possible to choose this sequence in such a way that $\left\langle x, y_{n}\right\rangle \geq$ $\varphi\left(y_{n}\right) \geq 0$ for every n. Indeed, we know that $f^{\sharp}(x) \leq 1$. If $f^{\sharp}(x)<1$ we will automatically have $\left\langle x, y_{n}\right\rangle>\varphi\left(y_{n}\right) \geq 0$ for large enough n. If $f^{\sharp}(x)=1$, just take $y_{n}=0$ for all n.

For every two numbers $B \geq A \geq 0$ we have

$$
\frac{1+B}{1+A} \leq 1+B-A
$$

as one easily checks. Applying this to $B=\frac{\left\langle x, y_{n}\right\rangle}{\beta}$ and $A=\frac{\varphi\left(y_{n}\right)}{\beta}$ we see that

$$
\left(\frac{1+\frac{\left\langle x, y_{n}\right\rangle}{\beta}}{1+\frac{\varphi\left(y_{n}\right)}{\beta}}\right)^{-\beta} \geq\left(1+\frac{\left\langle x, y_{n}\right\rangle-\varphi\left(y_{n}\right)}{\beta}\right)^{-\beta} \geq f^{*}(x)
$$

for all n. Sending $n \rightarrow \infty$ we see that $f^{\sharp}(x) \geq f^{*}(x)$ like we wanted.
This means that for every value of α Theorem 3 follows from Theorem 4. When $\alpha \rightarrow 0$ the transforms $*$ and \sharp coincide, so both theorems reduce to same result Theorem 2.

3 Further properties of \sharp-transform

In this section we will discuss further properties of the new \sharp-transform, \sharp : $\mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ for $\alpha<0$. We already used the simple fact that \sharp is order reversing: if $f, g \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ and $f \leq g$ (pointwise), then $f^{\sharp} \geq g^{\sharp}$. Surprisingly, however, \sharp is not a duality transform, as it is not an involution.

One simple way of verifying the last assertion is by computing a few examples:
Example 1 Let K be a convex body containing the origin. Remember that the gauge function of K is defined by

$$
\|x\|_{K}=\inf \left\{r>0: \frac{x}{r} \in K\right\} .
$$

Let us denote by $\mathbf{1}_{K}$ the indicator function of K. Then a simple calculation gives

$$
\mathbf{1}_{K}^{\sharp}=\mathbf{1}_{K}^{*}=\left(1+\frac{\|x\|_{K^{\circ}}}{\beta}\right)^{-\beta}
$$

and

$$
\left[\left(1+\frac{\|x\|_{K}}{\beta}\right)^{-\beta}\right]^{\sharp}=\min \left\{\frac{1}{\|x\|_{K^{\circ}}^{\beta}}, 1\right\} .
$$

In particular, we see that $\mathbf{1}_{K}^{\sharp \#} \neq \mathbf{1}_{K}$ for every $\alpha<0$ (equivalently, for every $\beta<\infty$).
In order to prove more delicate properties of the \sharp-transform, we will need to examine it from a different point view. Denote by $\operatorname{Cvx}_{0}\left(\mathbb{R}^{n}\right)$ the class of all convex functions $\varphi: \mathbb{R}^{n} \rightarrow[0, \infty]$ such that φ is lower semicontinuous and $\varphi(0)=0$. The map base ${ }_{\alpha}: \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Cvx}_{0}\left(\mathbb{R}^{n}\right)$ from Definition 3 is easily seen to be an order reversing bijection. Hence, if we wish to understand the \sharp-transform, it is enough to study its conjugate $\mathcal{T}_{\alpha}: \operatorname{Cvx} 0\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Cvx}\left(\mathbb{R}^{n}\right)$ which is defined by

$$
\mathcal{T}_{\alpha}=\operatorname{base}_{\alpha} \circ \sharp \circ\left(\operatorname{base}_{\alpha}^{-1}\right) .
$$

The transform \mathcal{T}_{α} can be written down explicitly:
Proposition 4 For every $\varphi \in \operatorname{Cvx}_{0}\left(\mathbb{R}^{n}\right)$ and every $x \in \mathbb{R}^{n}$ we have

$$
\begin{equation*}
\left(\mathcal{T}_{\alpha} \varphi\right)(x)=\sup _{y \in \mathbb{R}^{n}} \frac{\langle x, y\rangle-\varphi(y)}{1-\alpha \varphi(y)}=\sup _{y \in \mathbb{R}^{n}} \frac{\langle x, y\rangle-\varphi(y)}{1+\frac{\varphi(y)}{\beta}} \tag{3}
\end{equation*}
$$

In particular we see that $\mathcal{T}_{0}=\mathcal{L}$ is the Legendre transform. This also follows from the fact that on $\mathrm{C}_{0}\left(\mathbb{R}^{n}\right)$ the \sharp-transform and the $*$-transform coincide.

Proof Let us use equation (3) as the definition of \mathcal{T}_{α}, and check that under this definition we really have

$$
\mathcal{T}_{\alpha}=\operatorname{base}_{\alpha} \circ \sharp \circ\left(\text { base }_{\alpha}^{-1}\right) .
$$

This is of course the same as $\left(\right.$ base $\left._{\alpha}^{-1}\right) \circ \mathcal{T}_{\alpha}=\sharp \circ\left(\right.$ base $\left._{\alpha}^{-1}\right)$. Plugging in all of the definitions, we need to prove that for every $\varphi \in \operatorname{Cvx}_{0}\left(\mathbb{R}^{n}\right)$ and every $x \in \mathbb{R}^{n}$

$$
\left(1+\frac{1}{\beta} \cdot \sup _{y} \frac{\langle x, y\rangle-\varphi(y)}{1+\frac{\varphi(y)}{\beta}}\right)^{-\beta}=\inf _{y} \frac{\left(1+\frac{\langle x, y\rangle}{\beta}\right)^{-\beta}}{\left(1+\frac{\varphi(y)}{\beta}\right)^{-\beta}}
$$

and checking this equality involves nothing more than simple algebra.
Interestingly, the transforms \mathcal{T}_{α} were introduced and studied by Milman around 1970 for very different applications in functional analysis (see [13], [15] for the original papers in Russian and section 3.3 of the survey [14] for a partial translation to English. The remark in the end of section 3 of [1] is also relevant, but inaccurate). The only result we will need from these works is the following geometric characterization of \mathcal{T}_{α} :

Fix a function $\varphi \in \operatorname{Cvx}_{0}\left(\mathbb{R}^{n}\right)$. We will use φ to construct a function ρ : $\mathbb{R}^{n} \times \mathbb{R} \rightarrow[0, \infty]$ in the following way: first, we define

$$
\rho(x, \sqrt{\beta})=\frac{\beta+\varphi(x)}{\sqrt{\beta}} .
$$

Next, we extend ρ by requiring it to be 1-homoegeneous. Hence for every $x \in \mathbb{R}^{n}$ and $t \neq 0$ we define

$$
\rho(x, t)=\rho\left(\frac{t}{\sqrt{\beta}} \cdot\left(\frac{x \sqrt{\beta}}{t}, \sqrt{\beta}\right)\right)=\frac{|t|}{\sqrt{\beta}} \cdot \frac{\beta+\varphi\left(\frac{x \sqrt{\beta}}{t}\right)}{\sqrt{\beta}}=|t|+\frac{|t|}{\beta} \varphi\left(\frac{x \sqrt{\beta}}{t}\right) .
$$

The values of ρ on the hyperplane $t=0$ are not so important, but for concreteness we will define $\rho(x, 0)=\lim _{t \rightarrow 0^{+}} \rho(x, t)$ (the limit exists by the convexity of φ).

The function ρ is 1-homoegeneous by construction, but in general it will not be a norm on \mathbb{R}^{n+1}, since there is no reason for ρ to be convex. Nonetheless, we can define the "dual" norm

$$
\rho^{*}(x, t)=\sup _{(y, s) \in \mathbb{R}^{n+1}} \frac{\langle x, y\rangle+t s}{\rho(y, s)}
$$

which is always a proper norm on \mathbb{R}^{n+1}. Now if we restrict ourselves back to the hyperplane $t=\beta$ a direct calculation gives

$$
\rho^{*}(x, \sqrt{\beta})=\frac{\beta+\left(\mathcal{T}_{\alpha} \varphi\right)(x)}{\sqrt{\beta}},
$$

which shows the relation between the transform \mathcal{T}_{α} and the classic notion of duality.
Using this construction we can prove several properties of the \sharp-transform. Specifically we have:

Theorem 6 Fix $-\infty<\alpha<0$, and let $\sharp: \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ be the \sharp-transform. Then:

1. For every $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ we have $f^{\sharp \sharp} \geq f$.
2. For every $f \in \mathrm{C}_{\alpha}\left(\mathbb{R}^{n}\right)$ we have $f^{\sharp \sharp \sharp}=f^{\sharp}$. In other words, \sharp is a duality transform on its image.
3. $\#$ is neither injective nor surjective.

Theorem 6 is an immediate corollary of the following proposition, establishing the same properties for the transform \mathcal{T}_{α} :

Proposition 5 Fix $-\infty<\alpha<0$, and let $\mathcal{T}_{\alpha}: \operatorname{Cvx}_{0}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Cvx}_{0}\left(\mathbb{R}^{n}\right)$ be the transform defined above. Then:

1. For every $\varphi \in \operatorname{Cvx}_{0}\left(\mathbb{R}^{n}\right)$ we have $\mathcal{T}_{\alpha}^{2} \varphi \leq \varphi$.
2. For every $\varphi \in \operatorname{Cvx}_{0}\left(\mathbb{R}^{n}\right)$ we have $\mathcal{T}_{\alpha}^{3} \varphi=\mathcal{T}_{\alpha} \varphi$. In other words, \mathcal{T}_{α} is a duality transform on its image.
3. \mathcal{T}_{α} is neither injective nor surjective.

Proof Fix $\varphi \in \operatorname{Cvx} 0\left(\mathbb{R}^{n}\right)$, and let $\rho: \mathbb{R}^{n+1} \rightarrow[0, \infty]$ we defined as above. It is well known that if ρ is any 1-homogenous function, which is not necessarily convex, then $\rho^{* *} \leq \rho$. In particular

$$
\frac{\beta+\left(\mathcal{T}_{\alpha}^{2} \varphi\right)(x)}{\sqrt{\beta}}=\rho^{* *}(x, \sqrt{\beta}) \leq \rho(x, \sqrt{\beta})=\frac{\beta+\varphi(x)}{\sqrt{\beta}}
$$

which proves (1).
Since ρ^{*} is already a norm, we must have $\rho^{* * *}=\left(\rho^{*}\right)^{* *}=\rho^{*}$. Restricting again to the hyperplane $t=\beta$ we see that $\mathcal{T}_{\alpha}^{3} \varphi=\mathcal{T}_{\alpha} \varphi$, which proves (2).

Next we prove (3), and begin by showing that \mathcal{T}_{α} is not surjective. If φ is in the image of \mathcal{T}_{α}, then the above discussion implies that the corresponding ρ must be a norm on \mathbb{R}^{n+1}. In particular, ρ must be comparable to the Euclidean norm, i.e. there exists a constant $C>0$ such that

$$
\rho(x, t) \leq C|(x, t)|=C \sqrt{|x|^{2}+t^{2}}
$$

Therefore

$$
\varphi(x)=\sqrt{\beta} \cdot \rho(x, \sqrt{\beta})-\beta \leq C \sqrt{\beta} \sqrt{|x|^{2}+\beta} \leq C(\sqrt{\beta}|x|+\beta)
$$

and we see that every function φ in the image of \mathcal{T}_{α} must grow at most linearly. In particular, the function $\varphi(x)=|x|^{2}$ is not in the image of \mathcal{T}_{α}, so \mathcal{T}_{α} is not surjective.

Finally, we will show that \mathcal{T}_{α} is also not injective. Take any $\varphi \in \operatorname{Cvx}_{0}\left(\mathbb{R}^{n}\right)$ which is not in the image of \mathcal{T}_{α}. Then $\mathcal{T}_{\alpha}\left(\mathcal{T}_{\alpha}^{2} \varphi\right)=\mathcal{T}_{\alpha}^{3} \varphi=\mathcal{T}_{\alpha} \varphi$, even though $\mathcal{T}_{\alpha}^{2} \varphi \neq \varphi$. This shows that \mathcal{T}_{α} is not injective, and the proof is complete.

References

1. Shiri Artstein-Avidan, Bo'az Klartag, and Vitali Milman. The Santaló point of a function, and a functional form of the Santaló inequality. Mathematika, 51(1-2):33, February 2010.
2. Shiri Artstein-Avidan and Vitali Milman. A characterization of the concept of duality. Electronic Research Announcements in Mathematical Sciences, 14:42-59, 2007.
3. Shiri Artstein-Avidan and Vitali Milman. Hidden structures in the class of convex functions and a new duality transform. Journal of the European Mathematical Society, 13(4):975-1004, 2011.
4. Shiri Artstein-Avidan and Boaz Slomka. A note on Santaló inequality for the polarity transform and its reverse. arXiv:1303.3114, 2013.
5. Mordecai Avriel. r-convex functions. Mathematical Programming, 2(1):309-323, February 1972.
6. Keith Ball. Isometric problems in ℓ_{p} and sections of convex sets. PhD thesis, University of Cambridge, 1987.
7. Sergey G. Bobkov. Convex bodies and norms associated to convex measures. Probability Theory and Related Fields, 147(1-2):303-332, March 2009.
8. Christer Borell. Convex measures on locally convex spaces. Arkiv för matematik, 12(1-2):239-252, December 1974 .
9. Christer Borell. Convex set functions in d-space. Periodica Mathematica Hungarica, 6(2):111-136, 1975.
10. Herm J. Brascamp and Elliott H. Lieb. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for \log concave functions, and with an application to the diffusion equation. Journal of Functional Analysis, 22(4):366-389, August 1976.
11. Matthieu Fradelizi and Mathieu Meyer. Some functional forms of Blaschke-Santaló inequality. Mathematische Zeitschrift, 256(2):379-395, December 2006.
12. Mathieu Meyer and Alain Pajor. On the Blaschke-Santaló inequality. Archiv der Mathematik, 55(1):82-93, July 1990.
13. Vitali Milman. A certain transformation of convex functions and a duality of the β and δ characteristics of a B-space. Doklady Akademii Nauk SSSR, 187:33-35, 1969.
14. Vitali Milman. Geometric theory of Banach spaces, part II: Geometry of the unit sphere. Russian Mathematical Surveys, 26(6):79-163, December 1971.
15. Vitali Milman. Duality of certain geometric characteristics of a Banach space. Teorija Funkcii, Funkcionalnyi Analiz i ih Prilozenija, 18:120-137, 1973.
16. Vitali Milman. Geometrization of probability. In Mikhail Kapranov, Sergiy Kolyada, Yuri Ivanovich Manin, Pieter Moree, and Leonid Potyagailo, editors, Geometry and Dynamics of Groups and Spaces, volume 265 of Progress in Mathematics, pages 647-667. Birkhäuser, Basel, 2008.
17. Liran Rotem. Support functions and mean width for α-concave functions. Advances in Mathematics, 243:168-186, August 2013.

[^0]: L. Rotem

 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
 E-mail: liranro1@post.tau.ac.il

