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for α-concave functions, and characterize the equality case. This extends the known
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Keywords Blaschke-Santaló inequality · convexity · α-concavity · log-concavity

Mathematics Subject Classification (2010) 52A40 · 26B25

1 Blaschke–Santaló type inequalities

We begin by recalling the classic Blaschke-Santaló inequality. A convex body in Rn
is compact, convex set with non-empty interior. Such a convex body K is called
symmetric if K = −K. We will denote by |K| the (Lebesgue) volume of K. Finally,
we define the polar body of K to be

K◦ = {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K} ,

where 〈·, ·〉 is the standard scalar product on Rn.

Polarity is a basic notion in convex geometry. It is easy to see that if K is sym-
metric, convex body, then so is K◦. The map K 7→ K◦ satisfies two fundamental
properties:

1. It is order reversing : If K1 ⊆ K2, then K◦1 ⊇ K◦2 .
2. It is an involution: For every symmetric convex body K we have K = (K◦)◦.
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These two properties say that polarity is a duality transform (see, e.g., [2]).
The volume of K◦ is related to the volume of K by the Blaschke-Santaló

inequality

Theorem 1 (Blaschke, Santaló) Assume K ⊆ Rn is a symmetric, convex body.
Then

|K| ·
∣∣K◦∣∣ ≤ |D|2 ,

where D ⊆ Rn is the unit Euclidean ball. Furthermore, we have an equality if and
only if K is an ellipsoid.

This theorem was proven by Blaschke in dimensions 2 and 3, and Santaló extended
the result to arbitrary dimensions. There exists a version of the inequality for non-
symmetric bodies, but for simplicity we will only deal with the symmetric case.
The generalized statement, proofs and further references can be found, e.g., in [12].

In [1], Artstein-Avidan, Klartag and Milman prove a functional extension of
the Blaschke-Santaló inequality. To explain their result and put it in perspective,
we will need to define α-concave functions:

Definition 1 Fix −∞ ≤ α ≤ ∞. We say that a function f : Rn → [0,∞) is
α-concave if f is supported on some convex set Ω, and for every x, y ∈ Ω and
0 ≤ λ ≤ 1 we have

f (λx+ (1− λ)y) ≥ [λf(x)α + (1− λ) f(y)α]
1
α .

We will always assume that f is upper semicontinuous and that

max
x∈Rn

f(x) = f(0) = 1

(this last condition is sometimes known as saying that f is geometric).
The class of all such α-concave functions will be denoted by Cα (Rn).

Remember that f : Rn → [0,∞) is called upper semicontinuous if its upper level
sets {x ∈ Rn : f(x) ≥ t} are closed for all t ≥ 0.

α-concave functions were first defined by Avriel ([5]), and were studied by
Borell ([8],[9]) and by Brascamp and Lieb ([10]). In the case α =∞ we understand
the definition in the limiting sense as

f (λx+ (1− λ)y) ≥ max {f(x), f(y)} .

This just means that f is constant on its support, so functions in C∞ (Rn) are
indicator functions of convex sets, which by our assumptions must also be closed
and contain the origin. If we further assume that f ∈ C∞ (Rn) satisfy 0 <

´
f <∞,

then f must be the indicator function of a convex body, and we can identify these
functions with the convex bodies themselves.

If α1 < α2, then Cα1 (Rn) ⊇ Cα2 (Rn). This means that we can think of every
class of functions Cα (Rn) as extending the class of convex bodies. Originally,
this was done for the class C0 (Rn) of log-concave functions. Again we interpret
Definition 1 in the limiting sense, and say that a function f : Rn → [0,∞) is
log-concave if

f (λx+ (1− λ)y) ≥ f(x)λf(y)1−λ.

for every x, y ∈ Rn and 0 ≤ λ ≤ 1.
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Many definitions and theorems of convex geometry were generalized to the class
of log-concave functions. Except the usual aspiration for generality, the developed
theory helped to prove new deep theorems in convexity and asymptotic geometric
analysis. For a survey of such results and their importance, see [16].

One of the first results in this new direction was the functional Santaló theorem.
In order to state it we will begin with a convenient definition:

Definition 2 For every f ∈ C0 (Rn) we define

f∗ = exp (−L (− log f)) ∈ C0 (Rn) ,

where L is the Legendre transform, defined by

(Lϕ) (x) = sup
y∈Rn

(〈x, y〉 − ϕ(y)) .

This definition just means that if f = e−ϕ for a convex function ϕ, then f∗ = e−Lϕ.
It turns out that the map f 7→ f∗ is a duality transform on C0 (Rn), and we have
the following theorem:

Theorem 2 Assume f ∈ C0 (Rn) is even and 0 <
´
f <∞. Then

ˆ
f ·
ˆ
f∗ ≤

(ˆ
G

)2

= (2π)n ,

where

G(x) = e−
|x|2
2 .

Equality occurs if and only if f = G◦T for an invertible linear map T : Rn → Rn.

This inequality, in the even case, is originally due to Ball ([6]). In [1], Artstein-
Avidan, Klartag and Milman present this result as a Blaschke–Santaló type in-
equality, extend the result to the non-even case and characterize the equality case.

As a side note, let us mention that given our current knowledge, the form
of Theorem 2 is somewhat surprising. Following a series of works by Artstein-
Avidan and Milman, we now understand that even though the map f 7→ f∗ is a
duality transform, it is not the correct extension of the classic notion of polarity
(see [3]). The correct extension is another duality transform, usually denoted f 7→
f◦, which is based on the so-called A-transform. Hence we expect the functional
Blaschke–Santaló inequality to bound an expression of the form

ˆ
f ·
ˆ
f◦, (1)

which is not what we see in Theorem 2. In fact, a sharp upper bound on (1) is not
known, even though an asymptotic result was recently found by Artstein-Avidan
and Slomka ([4]).

The goal of this paper is to discuss Blaschke-Santaló inequalities for α-concave
functions, for values of α different from 0. The case α > 0 was resolved already in
[1], so we will assume from now on that α ≤ 0. The following definition appeared
in [17]:
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Definition 3 Assume −∞ < α < 0. The convex base of a function f ∈ Cα (Rn)
is

baseα f =
1− fα

α
.

Put differently, ϕ = baseα f is the unique convex function such that

f =

(
1 +

ϕ

β

)−β
.

Here and after, we use the parameter β = − 1
α . As α ≤ 0 and β ≥ 0, it is

often less confusing to use β instead of α. In the limiting case α = 0 we define
base0 (f) = − log f . Using the notion of a convex base we can extend Definition 2
to the general case:

Definition 4 The dual of a function f ∈ Cα (Rn) is the function f∗ ∈ Cα (Rn)
defined by relation

baseα(f∗) = L (baseα(f)) .

Note that the operation ∗ depends on α. Remember that if f ∈ Cα (Rn) then
f ∈ Cα′ (Rn) for all α′ < α. Thinking of f as an element in Cα′ (Rn) will yield
a different f∗ than thinking about f as function in Cα (Rn). Therefore, strictly
speaking, we should use a notation like f∗α . However, this notation is extremely
cumbersome, so we will use the simpler notation f∗, and keep in mind the implicit
dependence on α.

We can now state what appears to be the natural extension of Theorem 2 to
the α-concave case:

Theorem 3 Fix − 1
n < α ≤ 0. For every even function f ∈ Cα (Rn) such that

0 <
´
f <∞ we have ˆ

f ·
ˆ
f∗ ≤

(ˆ
Hα

)2

, (2)

where

Hα(x) =

(
1 +
|x|2

β

)− β
2

∈ Cα (Rn) .

This theorem was proven by Bobkov ([7]) using a general result by Fradelizi and
Meyer ([11]), which we will cite in the next section as Theorem 5. The condition
α > − 1

n is necessary, because the function Hα is no longer integrable for α ≤ − 1
n .

In fact, it is not hard to check thatˆ
Hα ·

ˆ
H∗α →∞

as α→ − 1
n , so it is not possible to find a finite upper bound for

´
f ·
´
f∗ whenever

α ≤ − 1
n . Notice that as α→ 0 the functions Hα converge to the Gaussian G, and

we obtain Theorem 2 as a special case of Theorem 3.
Surprisingly, as was already observed by Bobkov, Theorem 3 is not sharp when

α < 0. Given the previously described results, it is very natural to expect an
equality in (2) when f = Hα. However, an explicit (yet tedious) calculation shows
that H∗α(x) < Hα(x) for all x 6= 0, so

ˆ
Hα ·

ˆ
H∗α <

(ˆ
Hα

)2

.
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In fact, there exists a unique function Gα ∈ Cα (Rn) such that G∗α = Gα, and
this function is

Gα(x) =

(
1 +
|x|2

2β

)−β
.

Notice that in the limiting case α→ 0 we have H0 = G0 = G, but for other values
of α these functions are quite different. Inspired by Theorems 1 and 2, it may seem
reasonable to conjecture that

ˆ
f ·
ˆ
f∗ ≤

(ˆ
Gα

)2

for all even f ∈ Cα (Rn). Such an inequality, if true, will obviously be sharp.
Unfortunately, this inequality is false for α < 0. As one possible counterexample,
take f = 1D, the indicator function of the ball. In this case

f∗ =

(
1 +
|x|
β

)−β
,

and a direct computation of the integrals show that this is indeed a counterexample
if the dimension n is large enough compared to β (For concreteness, it is enough

to take n =
⌈
β
2

⌉
for all large enough β).

In the next sections we will show the reason inequality (2) is not sharp is
that the transform ∗ is not the correct extension of polarity to use in the func-
tional Blaschke-Santaló inequality. In section 2 we will define a new transform on
Cα (Rn), which we call ]-transform. We will then use this ]-transform to prove a
sharp version of Theorem 3. Finally, in section 3, we will discuss further properties
of ] which are not directly related to the Blaschke-Santaló inequality, and give a
geometric interpretation of this transform.

2 A new transform on α-concave functions

In [1], Artstein-Avidan, Klartag and Milman obtain Theorem 2 as the limit of
Blaschke-Santaló type inequalities for α-concave functions, α ≥ 0. Let us warn the
reader that [1] uses a slightly different notation than the one used in this paper:
an α-concave function in this paper is the same as a 1

α -concave function in [1], and
vice versa.

Inspired by the transforms in [1], we define the following:

Definition 5 For f ∈ Cα (Rn) we define

f ](x) = inf
y

1

f(y) ·
(

1 + 〈x,y〉
β

)β =
1

supy

[
f(y) ·

(
1 + 〈x,y〉

β

)β] ,
where the infimum is taken over all points y ∈ Rn such that f(y) > 0 and 〈x, y〉 >
−β.

Like the ∗ transform, the ] transform also depends on α, so in principle we should
write f ]α . Nonetheless, we opt for the simpler notation f ].

Let us begin by checking that f ] ∈ Cα (Rn):
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Proposition 1 For every f ∈ Cα (Rn) we have f ] ∈ Cα (Rn). If f is even, so is
f ].

Proof For a fixed y ∈ Rn with f(y) > 0 the function

fy(x) =

 1
f(y) ·

(
1 + 〈x,y〉

β

)−β
if 〈x, y〉 > −β,

∞ otherwise

is upper semicontinuous and α-concave (except the fact it can attain the value
+∞, which we usually exclude from the definition). Now we can write

f ](x) = inf
y: f(y)>0

fy(x),

so f ] is α-concave as the infimum of a family of α-concave functions. Similarly
f ] is upper semicontinuous, as the infimum of a family of upper semicontinuous
functions.

For every x ∈ Rn we have

f ](x) = inf
y

1

f(y) ·
(

1 + 〈x,y〉
β

)β ≤ 1

f(0)
(

1 + 〈x,0〉
β

)β = 1.

Additionally,

f ](0) = inf
y

1

f(y)
(

1 + 〈0,y〉
β

)β
+

= inf
y

1

f(y)
=

1

supy f(y)
= 1.

and we see that f ] is geometric. Hence we have f ] ∈ Cα (Rn) like we wanted.
Finally if f is even then

f ](−x) = inf
y

1

f(y) ·
(

1 + 〈−x,y〉
β

)β = inf
y

1

f(−y) ·
(

1 + 〈−x,−y〉
β

)β ,
= inf

y

1

f(y) ·
(

1 + 〈x,y〉
β

)β = f ](x),

so f ] is even as well.

Our main goal in this section is to prove the following theorem:

Theorem 4 Fix − 1
n < α ≤ 0. For every even f ∈ Cα (Rn) such that 0 <

´
f <∞

we have ˆ
f ·
ˆ
f ] ≤

(ˆ
Hα

)2

,

with equality if and only if f = Hα ◦ T for an invertible linear transformation
T : Rn → Rn.

Here we have Hα(x) =
(

1 + |x|2
β

)− β
2
, just like in Theorem 3 of Bobkov. For

α ≤ − 1
n one cannot hope for a finite upper bound on the product

´
f ·
´
f ]. This

can be seen by choosing f = Hα, and considering the following proposition:
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Proposition 2 H]
α = Hα, and Hα is the only function with this property.

Proof First we calculate H]
α explicitly and show that H]

α = Hα. By definition,

H]
α(x) =

[
sup
y
Hα(y)

(
1 +
〈x, y〉
β

)β]−1

=

sup
y

(
1 +
|y|2

β

)− β
2
(

1 +
〈x, y〉
β

)β
︸ ︷︷ ︸

(?)


−1

.

Notice that if we take a vector y and rotate it to have the same direction as x, we
can only increase the expression (?). Hence

H]
α(x) =

sup
λ>0

(
1 +
|λx|2

β

)− β
2
(

1 +
〈x, λx〉
β

)β−1

=

sup
λ>0

(
1 + λ|x|2

β

)2
1 + λ2|x|2

β


− β

2

.

It is now an exercise in calculus to differentiate and check that the supremum is
actually a maximum, which is obtained for λ = 1. Hence

H]
α(x) =


(

1 + |x|2
β

)2
1 + |x|2

β


− β

2

=

(
1 +
|x|2

β

)− β
2

= Hα(x)

which is what we needed to show.

Now assume that f ∈ Cα (Rn) is any function such that f ] = f . For every
x ∈ Rn with f(x) > 0 we have

f(x) = f ](x) = inf
y

1

f(y) ·
(

1 + 〈x,y〉
β

)β ≤ 1

f(x) ·
(

1 + |x|2
β

)β ,
so multiplying by f(x) and taking a square root we get f(x) ≤ Hα(x). If f(x) = 0
then f(x) ≤ Hα(x) holds trivially, so the inequality is true for all x ∈ Rn.

It is obvious from the definition that ] is order reversing, so we may apply it
on both sides and obtain

f = f ] ≥ H]
α = Hα,

so f = Hα like we wanted.

Theorem 4, like Theorem 3, will follow from a general result of Fradelizi and Meyer
([11]). We state their result here:
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Theorem 5 Let f1, f2 : Rn → R+ and ρ : R+ → R+ be measurable functions,
such that

f1(x)f2(y) ≤ ρ2 (〈x, y〉)

for every x, y ∈ Rn such that 〈x, y〉 > 0. If, additionally, f1 is even, then

ˆ
f1 ·
ˆ
f2 ≤

(ˆ
ρ(|x|2)dx

)2

.

Assume further that ρ is continuous. Then equality will occur if and only if:

1.
√
ρ(s)ρ(t) ≤ ρ(

√
st) for every s, t ≥ 0.

2. If n ≥ 2 then either ρ(0) > 0 or ρ ≡ 0.
3. There exists a positive definite matrix T and a constant d > 0 such that

f1(x) = d · ρ
(
|Tx|2

)
, f2(x) =

1

d
· ρ
(∣∣∣T−1x

∣∣∣2)
almost everywhere.

Let us use this result to prove Theorem 4:

Proof (Proof of Theorem 4) Define a function ρ : R+ → R+ by

ρ(t) =

(
1 +

t

β

)−β/2
.

Fix x, y ∈ Rn with 〈x, y〉 > 0. If f(x) = 0 then obviously f(x)f ](y) ≤
ρ2 (〈x, y〉). If, on the other hand, f(x) > 0 then

f(x) · f ](y) = inf
z

f(x)

f(z) ·
(

1 + 〈y,z〉
β

)β
+

≤ f(x)

f(x) ·
(

1 + 〈y,x〉
β

)β
=

(
1 +
〈x, y〉
β

)−β
= ρ2 (〈x, y〉) .

From Theorem 5 we conclude that indeed

ˆ
f ·
ˆ
f ] ≤

(ˆ
ρ(|x|2)dx

)2

=

(ˆ
Hα

)2

.

Next we analyze the equality case. From Theorem 5 we see that a necessary
condition to have equality is

f(x) = d · ρ
(
|Tx|2

)
= d ·Hα(Tx)

for a constant d > 0 and a linear map T : Rn → Rn (which we may take to be
positive definite if we want). Since f ∈ Cα (Rn) we know that

1 = f(0) = d ·Hα(0) = d · 1 = d,

so we must have f = Hα ◦ T .
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To see that this condition is also sufficient, notice that for every f ∈ Cα (Rn)
and every invertible linear map T we have

(f ◦ T )] (x) =

[
sup
y
f(Ty)

(
1 +
〈x, y〉
β

)β]−1

=

sup
y
f(y)

(
1 +

〈
x, T−1y

〉
β

)β−1

=

sup
y
f(y)

(
1 +

〈(
T−1

)∗
x, y
〉

β

)β−1

= f ]
((
T−1

)∗
x
)
.

Using a simple change of variables and Proposition 2 we get that if f = Hα ◦ T
then ˆ

f ·
ˆ
f ] =

ˆ
(Hα ◦ T ) ·

ˆ (
H]
α ◦

(
T−1

)∗)
=

1

det(T ) · det ((T−1)∗)

ˆ
Hα

ˆ
H]
α =

(ˆ
Hα

)2

so we are done.

Remark 1 For simplicity, Theorem 4 is only stated for even functions. Fradelizi and
Meyer also proved in [11] a generalization of Theorem 5 for non-even functions,
which can be used to extend Theorem 4 to the non-even case. The proof remains
essentially the same, so we leave the details to the interested reader.

To conclude this section, let us compare Theorem 4 with Theorem 3. We have the
following proposition:

Proposition 3 For every f ∈ Cα (Rn) we have f ] ≥ f∗.

Proof Denote ϕ = baseα(f). We need to prove that for every x ∈ Rn we have
f ](x) ≥ f∗(x), which is equivalent to

inf
y

(
1 + 〈x,y〉

β

1 + ϕ(y)
β

)−β
≥ inf

y

(
1 +
〈x, y〉 − ϕ(y)

β

)−β
.

Choose a sequence {yn} such that(
1 + 〈x,yn〉

β

1 + ϕ(yn)
β

)−β
→ f ](x).

We claim it is always possible to choose this sequence in such a way that 〈x, yn〉 ≥
ϕ(yn) ≥ 0 for every n. Indeed, we know that f ](x) ≤ 1. If f ](x) < 1 we will
automatically have 〈x, yn〉 > ϕ(yn) ≥ 0 for large enough n. If f ](x) = 1, just take
yn = 0 for all n.

For every two numbers B ≥ A ≥ 0 we have

1 +B

1 +A
≤ 1 +B −A,
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as one easily checks. Applying this to B = 〈x,yn〉
β and A = ϕ(yn)

β we see that(
1 + 〈x,yn〉

β

1 + ϕ(yn)
β

)−β
≥
(

1 +
〈x, yn〉 − ϕ(yn)

β

)−β
≥ f∗(x)

for all n. Sending n→∞ we see that f ](x) ≥ f∗(x) like we wanted.

This means that for every value of α Theorem 3 follows from Theorem 4. When
α → 0 the transforms ∗ and ] coincide, so both theorems reduce to same result -
Theorem 2.

3 Further properties of ]-transform

In this section we will discuss further properties of the new ]-transform, ] :
Cα (Rn) → Cα (Rn) for α < 0. We already used the simple fact that ] is or-
der reversing: if f, g ∈ Cα (Rn) and f ≤ g (pointwise), then f ] ≥ g]. Surprisingly,
however, ] is not a duality transform, as it is not an involution.

One simple way of verifying the last assertion is by computing a few examples:

Example 1 Let K be a convex body containing the origin. Remember that the
gauge function of K is defined by

‖x‖K = inf
{
r > 0 :

x

r
∈ K

}
.

Let us denote by 1K the indicator function of K. Then a simple calculation gives

1]K = 1∗K =

(
1 +
‖x‖K◦
β

)−β
,

and [(
1 +
‖x‖K
β

)−β]]
= min

{
1

‖x‖βK◦
, 1

}
.

In particular, we see that 1]]K 6= 1K for every α < 0 (equivalently, for every β <∞).

In order to prove more delicate properties of the ]-transform, we will need to
examine it from a different point view. Denote by Cvx0 (Rn) the class of all convex
functions ϕ : Rn → [0,∞] such that ϕ is lower semicontinuous and ϕ(0) = 0. The
map baseα : Cα (Rn)→ Cvx0 (Rn) from Definition 3 is easily seen to be an order
reversing bijection. Hence, if we wish to understand the ]-transform, it is enough
to study its conjugate Tα : Cvx0 (Rn)→ Cvx0 (Rn) which is defined by

Tα = baseα ◦] ◦
(

base−1
α

)
.

The transform Tα can be written down explicitly:

Proposition 4 For every ϕ ∈ Cvx0 (Rn) and every x ∈ Rn we have

(Tαϕ) (x) = sup
y∈Rn

〈x, y〉 − ϕ(y)

1− αϕ(y)
= sup
y∈Rn

〈x, y〉 − ϕ(y)

1 + ϕ(y)
β

. (3)
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In particular we see that T0 = L is the Legendre transform. This also follows from
the fact that on C0 (Rn) the ]-transform and the ∗-transform coincide.

Proof Let us use equation (3) as the definition of Tα, and check that under this
definition we really have

Tα = baseα ◦] ◦
(

base−1
α

)
.

This is of course the same as
(
base−1

α

)
◦ Tα = ] ◦

(
base−1

α

)
. Plugging in all of the

definitions, we need to prove that for every ϕ ∈ Cvx0 (Rn) and every x ∈ Rn(
1 +

1

β
· sup
y

〈x, y〉 − ϕ(y)

1 + ϕ(y)
β

)−β
= inf

y

(
1 + 〈x,y〉

β

)−β
(

1 + ϕ(y)
β

)−β ,
and checking this equality involves nothing more than simple algebra.

Interestingly, the transforms Tα were introduced and studied by Milman around
1970 for very different applications in functional analysis (see [13], [15] for the orig-
inal papers in Russian and section 3.3 of the survey [14] for a partial translation
to English. The remark in the end of section 3 of [1] is also relevant, but inac-
curate). The only result we will need from these works is the following geometric
characterization of Tα:

Fix a function ϕ ∈ Cvx0 (Rn). We will use ϕ to construct a function ρ :
Rn × R→ [0,∞] in the following way: first, we define

ρ
(
x,
√
β
)

=
β + ϕ(x)√

β
.

Next, we extend ρ by requiring it to be 1-homoegeneous. Hence for every x ∈ Rn
and t 6= 0 we define

ρ (x, t) = ρ

(
t√
β
·
(
x
√
β

t
,
√
β

))
=
|t|√
β
·
β + ϕ

(
x
√
β
t

)
√
β

= |t|+ |t|
β
ϕ

(
x
√
β

t

)
.

The values of ρ on the hyperplane t = 0 are not so important, but for concreteness
we will define ρ(x, 0) = limt→0+ ρ(x, t) (the limit exists by the convexity of ϕ).

The function ρ is 1-homoegeneous by construction, but in general it will not
be a norm on Rn+1, since there is no reason for ρ to be convex. Nonetheless, we
can define the “dual” norm

ρ∗(x, t) = sup
(y,s)∈Rn+1

〈x, y〉+ ts

ρ(y, s)
,

which is always a proper norm on Rn+1. Now if we restrict ourselves back to the
hyperplane t = β a direct calculation gives

ρ∗(x,
√
β) =

β + (Tαϕ) (x)√
β

,

which shows the relation between the transform Tα and the classic notion of duality.
Using this construction we can prove several properties of the ]-transform.

Specifically we have:
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Theorem 6 Fix −∞ < α < 0, and let ] : Cα (Rn)→ Cα (Rn) be the ]-transform.
Then:

1. For every f ∈ Cα (Rn) we have f ]] ≥ f .
2. For every f ∈ Cα (Rn) we have f ]]] = f ]. In other words, ] is a duality

transform on its image.
3. ] is neither injective nor surjective.

Theorem 6 is an immediate corollary of the following proposition, establishing the
same properties for the transform Tα:

Proposition 5 Fix −∞ < α < 0, and let Tα : Cvx0 (Rn) → Cvx0 (Rn) be the
transform defined above. Then:

1. For every ϕ ∈ Cvx0 (Rn) we have T 2
αϕ ≤ ϕ.

2. For every ϕ ∈ Cvx0 (Rn) we have T 3
αϕ = Tαϕ. In other words, Tα is a duality

transform on its image.
3. Tα is neither injective nor surjective.

Proof Fix ϕ ∈ Cvx0 (Rn), and let ρ : Rn+1 → [0,∞] we defined as above. It is well
known that if ρ is any 1-homogenous function, which is not necessarily convex,
then ρ∗∗ ≤ ρ. In particular

β +
(
T 2
αϕ
)

(x)
√
β

= ρ∗∗(x,
√
β) ≤ ρ(x,

√
β) =

β + ϕ(x)√
β

,

which proves (1).

Since ρ∗ is already a norm, we must have ρ∗∗∗ = (ρ∗)∗∗ = ρ∗. Restricting again
to the hyperplane t = β we see that T 3

αϕ = Tαϕ, which proves (2).

Next we prove (3), and begin by showing that Tα is not surjective. If ϕ is in
the image of Tα, then the above discussion implies that the corresponding ρ must
be a norm on Rn+1. In particular, ρ must be comparable to the Euclidean norm,
i.e. there exists a constant C > 0 such that

ρ(x, t) ≤ C |(x, t)| = C

√
|x|2 + t2.

Therefore

ϕ(x) =
√
β · ρ

(
x,
√
β
)
− β ≤ C

√
β

√
|x|2 + β ≤ C

(√
β |x|+ β

)
,

and we see that every function ϕ in the image of Tα must grow at most linearly.
In particular, the function ϕ(x) = |x|2 is not in the image of Tα, so Tα is not
surjective.

Finally, we will show that Tα is also not injective. Take any ϕ ∈ Cvx0 (Rn)
which is not in the image of Tα. Then Tα

(
T 2
αϕ
)

= T 3
αϕ = Tαϕ, even though

T 2
αϕ 6= ϕ. This shows that Tα is not injective, and the proof is complete.
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and a functional form of the Santaló inequality. Mathematika, 51(1-2):33, February 2010.

2. Shiri Artstein-Avidan and Vitali Milman. A characterization of the concept of duality.
Electronic Research Announcements in Mathematical Sciences, 14:42–59, 2007.

3. Shiri Artstein-Avidan and Vitali Milman. Hidden structures in the class of convex func-
tions and a new duality transform. Journal of the European Mathematical Society,
13(4):975–1004, 2011.

4. Shiri Artstein-Avidan and Boaz Slomka. A note on Santaló inequality for the polarity
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