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Abstract We define a new transform on a-concave functions, which we call the §-
transform. Using this new transform, we prove a sharp Blaschke-Santal6 inequality
for a-concave functions, and characterize the equality case. This extends the known
functional Blaschke-Santalé inequality of Artstein-Avidan, Klartag and Milman,
and strengthens a result of Bobkov.

Finally, we prove that the §-transform is a duality transform when restricted to
its image. However, this transform is neither surjective nor injective on the entire
class of a-concave functions.
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1 Blaschke—Santalé type inequalities

We begin by recalling the classic Blaschke-Santalé inequality. A convex body in R™
is compact, convex set with non-empty interior. Such a convex body K is called
symmetric if K = —K. We will denote by |K| the (Lebesgue) volume of K. Finally,
we define the polar body of K to be

K°={zeR": (z,y)<1forallyec K},

where (-, -) is the standard scalar product on R™.

Polarity is a basic notion in convex geometry. It is easy to see that if K is sym-
metric, convex body, then so is K°. The map K — K° satisfies two fundamental
properties:

1. It is order reversing: If K1 C Ks, then K7 D K3.

2. It is an involution: For every symmetric convex body K we have K = (K°)°.
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These two properties say that polarity is a duality transform (see, e.g., [2]).
The volume of K° is related to the volume of K by the Blaschke-Santalé
inequality

Theorem 1 (Blaschke, Santald) Assume K C R"™ is a symmetric, convez body.
Then
o 2
K| |K°| < |DI,

where D C R™ is the unit Euclidean ball. Furthermore, we have an equality if and
only if K is an ellipsoid.

This theorem was proven by Blaschke in dimensions 2 and 3, and Santalé extended
the result to arbitrary dimensions. There exists a version of the inequality for non-
symmetric bodies, but for simplicity we will only deal with the symmetric case.
The generalized statement, proofs and further references can be found, e.g., in [12].

In [1], Artstein-Avidan, Klartag and Milman prove a functional extension of
the Blaschke-Santald inequality. To explain their result and put it in perspective,
we will need to define a-concave functions:

Definition 1 Fix —oo < a < oo. We say that a function f : R™ — [0,00) is
a-concave if f is supported on some convex set {2, and for every z,y € {2 and
0 < A <1 we have

fQz+(1=XNy) = [Mf(2)" + (1 =) f(y)]~.
We will always assume that f is upper semicontinuous and that

= = 1
max f(z) = f(0)
(this last condition is sometimes known as saying that f is geometric).
The class of all such a-concave functions will be denoted by Cq (R™).

Remember that f : R™ — [0,00) is called upper semicontinuous if its upper level
sets {x € R™: f(x) >t} are closed for all t > 0.

a-concave functions were first defined by Avriel ([5]), and were studied by
Borell ([8],]9]) and by Brascamp and Lieb ([10]). In the case o = 0o we understand
the definition in the limiting sense as

fx+ (1= Ny) = max{f(z), f(y)}

This just means that f is constant on its support, so functions in Co (R™) are
indicator functions of convex sets, which by our assumptions must also be closed
and contain the origin. If we further assume that f € Coo (R") satisfy 0 < [ f < oo,
then f must be the indicator function of a convex body, and we can identify these
functions with the convex bodies themselves.

If a1 < ag, then Cq, (R™) O Cq, (R™). This means that we can think of every
class of functions Cu (R™) as extending the class of convex bodies. Originally,
this was done for the class Co (R™) of log-concave functions. Again we interpret
Definition 1 in the limiting sense, and say that a function f : R™ — [0,00) is
log-concave if

FOz+ 1= Ny) > f) fly)'

for every 7,y € R" and 0 < X\ < 1.



A sharp Blaschke—Santal6 inequality for a-concave functions 3

Many definitions and theorems of convex geometry were generalized to the class
of log-concave functions. Except the usual aspiration for generality, the developed
theory helped to prove new deep theorems in convexity and asymptotic geometric
analysis. For a survey of such results and their importance, see [16].

One of the first results in this new direction was the functional Santalé theorem.
In order to state it we will begin with a convenient definition:

Definition 2 For every f € Co (R™) we define
f*=exp(=L(=1log f)) € Co(R"),

where L is the Legendre transform, defined by

(L) (x) = sup ((z,y) — ¢(v))-

yER™

This definition just means that if f = e~% for a convex function ¢, then f* = e~ £%.

It turns out that the map f — f* is a duality transform on Co (R™), and we have
the following theorem:

Theorem 2 Assume f € Co (R") is even and 0 < [ f < co. Then

/f-/f*S(/G)2=(27T)”,

=2

Glx)=e 2.

where

Equality occurs if and only if f = GoT for an invertible linear map T : R™ — R"™.

This inequality, in the even case, is originally due to Ball ([6]). In [1], Artstein-
Avidan, Klartag and Milman present this result as a Blaschke—Santald type in-
equality, extend the result to the non-even case and characterize the equality case.
As a side note, let us mention that given our current knowledge, the form
of Theorem 2 is somewhat surprising. Following a series of works by Artstein-
Avidan and Milman, we now understand that even though the map f +— f* is a
duality transform, it is not the correct extension of the classic notion of polarity
(see [3]). The correct extension is another duality transform, usually denoted f —
f°, which is based on the so-called A-transform. Hence we expect the functional
Blaschke—Santalé inequality to bound an expression of the form

[ [ (1)

which is not what we see in Theorem 2. In fact, a sharp upper bound on (1) is not
known, even though an asymptotic result was recently found by Artstein-Avidan
and Slomka ([4]).

The goal of this paper is to discuss Blaschke-Santalé inequalities for a-concave
functions, for values of « different from 0. The case o > 0 was resolved already in
[1], so we will assume from now on that a < 0. The following definition appeared
in [17]:
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Definition 3 Assume —co < a < 0. The convex base of a function f € Cq (R™)
is

1 _ «
baseq f = f .
@
Put differently, ¢ = base, f is the unique convex function such that
-8
¥
= (1 + 7) .
B
Here and after, we use the parameter § = —é. As o« < 0 and g > 0, it is
often less confusing to use 8 instead of a. In the limiting case a = 0 we define
baseg (f) = — log f. Using the notion of a convex base we can extend Definition 2

to the general case:

Definition 4 The dual of a function f € C, (R™) is the function f* € Cq (R™)
defined by relation
baseq (f*) = L (basea(f)) -

Note that the operation * depends on a. Remember that if f € Cq (R™) then
f € Co (R™) for all o/ < «. Thinking of f as an element in Cos (R™) will yield
a different f* than thinking about f as function in C, (R™). Therefore, strictly
speaking, we should use a notation like f*~. However, this notation is extremely
cumbersome, so we will use the simpler notation f*, and keep in mind the implicit
dependence on a.

We can now state what appears to be the natural extension of Theorem 2 to
the a-concave case:

Theorem 3 Fiz —% < a < 0. For every even function f € Cq (R™) such that

0 < [ f < oo we have ,
[sfre(fn)

2\ 3

Huo(z) = <1 + %) € Ca (R™).
This theorem was proven by Bobkov ([7]) using a general result by Fradelizi and
Meyer ([11]), which we will cite in the next section as Theorem 5. The condition
a > f% is necessary, because the function H, is no longer integrable for oo < f%.

In fact, it is not hard to check that

/Ha~/H;—>oo

as a — —%, so it is not possible to find a finite upper bound for [ f- [ f* whenever
a< —%. Notice that as o — 0 the functions H, converge to the Gaussian G, and
we obtain Theorem 2 as a special case of Theorem 3.

Surprisingly, as was already observed by Bobkov, Theorem 3 is not sharp when
a < 0. Given the previously described results, it is very natural to expect an
equality in (2) when f = H,. However, an explicit (yet tedious) calculation shows
that Hy(z) < Hu(z) for all 2 # 0, so

/Ha~/H;<(/Ha>2.

where
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In fact, there exists a unique function Go € Cq (R™) such that G}, = Ga, and

this function is
« — 28 .

Notice that in the limiting case & — 0 we have Ho = Go = G, but for other values
of a these functions are quite different. Inspired by Theorems 1 and 2, it may seem
reasonable to conjecture that

[rfre(fe)

for all even f € Cq (R™). Such an inequality, if true, will obviously be sharp.
Unfortunately, this inequality is false for e < 0. As one possible counterexample,
take f = 1p, the indicator function of the ball. In this case

. |x|>‘ﬂ
(i)

and a direct computation of the integrals show that this is indeed a counterexample
if the dimension n is large enough compared to 8 (For concreteness, it is enough

to take n = [g—‘ for all large enough f3).

In the next sections we will show the reason inequality (2) is not sharp is
that the transform * is not the correct extension of polarity to use in the func-
tional Blaschke-Santalé inequality. In section 2 we will define a new transform on
Cq (R™), which we call §-transform. We will then use this f-transform to prove a
sharp version of Theorem 3. Finally, in section 3, we will discuss further properties
of § which are not directly related to the Blaschke-Santal6 inequality, and give a
geometric interpretation of this transform.

2 A new transform on a-concave functions

In [1], Artstein-Avidan, Klartag and Milman obtain Theorem 2 as the limit of
Blaschke-Santalé type inequalities for a-concave functions, o > 0. Let us warn the
reader that [1] uses a slightly different notation than the one used in this paper:
an a-concave function in this paper is the same as a é—concave function in [1], and
vice versa.

Inspired by the transforms in [1], we define the following:

Definition 5 For f € C, (R") we define

1 1
f¥(w) = inf 5 = ,
Y f(y) - (1 4 %) sup, [f(y) . (1 + (x;;))ﬁ}

where the infimum is taken over all points y € R™ such that f(y) > 0 and (x,y) >
—B.

Like the x transform, the f transform also depends on «, so in principle we should
write fﬁ“. Nonetheless, we opt for the simpler notation fﬁ.
Let us begin by checking that f* € Cq (R™):
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Proposition 1 For every f € Cqo (R™) we have f* € Co (R™). If f is even, so is
.

Proof For a fixed y € R™ with f(y) > 0 the function

-8B
1. (z,y) : _
fo(x) = 4 T (1) 7 i ey > -8
00 otherwise

is upper semicontinuous and a-concave (except the fact it can attain the value
400, which we usually exclude from the definition). Now we can write

u _ .
f[H(x) = ;{nybofy(x%

so f* is a-concave as the infimum of a family of a-concave functions. Similarly
f* is upper semicontinuous, as the infimum of a family of upper semicontinuous
functions.

For every x € R™ we have

1 1

f¥(z) = inf 7 < 7 =1
Cw)- (1) O (14 52
Additionally,
1 1 1
f4(0) = inf = inf = =
v f() (1 + (Qﬁy))i v f(y) sup,, f(y)

and we see that f? is geometric. Hence we have f* € Cy, (R™) like we wanted.
Finally if f is even then

1 1
fH(—z) = inf = inf ,
Y iw)- (1+ —“g’”)ﬂ Vi) (1+ 7“3;‘”)6
— inf ! — fi(a),

so f* is even as well.

Our main goal in this section is to prove the following theorem:

Theorem 4 Fiz —% < a < 0. For every even f € Co (R™) such that 0 < [ f < oo

we have /f./fﬁg(/Ha)Q’

with equality if and only if f = Hq o T for an invertible linear transformation
T:R" — R".

MY

Here we have H,(z) = (1 + %>_ , just like in Theorem 3 of Bobkov. For

a < —% one cannot hope for a finite upper bound on the product f f- f fu. This
can be seen by choosing f = H,, and considering the following proposition:
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Proposition 2 HY = H., and H,, is the only function with this property.

Proof First we calculate H}i explicitly and show that Hg = H,. By definition,

B

- —1

2\ — 5 B
o) o)

L (%)

—1

H(z)

Notice that if we take a vector y and rotate it to have the same direction as x, we
can only increase the expression (x). Hence

_ . -1
-
H (z) sup (1 + [Ae] )
A>0 B

2\ 2
(14 285)

A?[z|?

B

w[w
N
—
+
®
>
3
N———
™

= |[sup
A>0 14

It is now an exercise in calculus to differentiate and check that the supremum is
actually a maximum, which is obtained for A = 1. Hence

_B
2 8

1212} —8
HE\(x) = 7(1—'— '6|2) :(1+wﬁ|2> = Hu(x)

i
1+B

which is what we needed to show.
Now assume that f € C, (R™) is any function such that f¥ = f. For every
x € R™ with f(x) > 0 we have

f(z) = fH(z) = inf ! < ! 7
Vi) (14 22) T pw - (14 22

so multiplying by f(z) and taking a square root we get f(z) < Ho(x). If f(x) =0
then f(z) < Ha(z) holds trivially, so the inequality is true for all z € R™.

It is obvious from the definition that f is order reversing, so we may apply it
on both sides and obtain

f=f">H\=H,,

so f = Hy like we wanted.

Theorem 4, like Theorem 3, will follow from a general result of Fradelizi and Meyer
([11]). We state their result here:
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Theorem 5 Let f1,f2 : R — R4 and p : Ry — Ry be measurable functions,
such that

fi(@) f2(y) < p* (2, )
for every x,y € R™ such that (z,y) > 0. If, additionally, f1 is even, then

/fl'/f2 < </p(|x|2)dm)2.

Assume further that p is continuous. Then equality will occur if and only if:

1. \/p(s)p(t) < p(Vst) for every s,t > 0.
2. If n > 2 then either p(0) > 0 or p = 0.
3. There exists a positive definite matrix T and a constant d > 0 such that

_ 2 _ L —1,/?
n@ =dep (o), fole) = 50 (|j7f)
almost everywhere.

Let us use this result to prove Theorem 4:

Proof (Proof of Theorem 4) Define a function p: RT™ — R by

o(t) = (1 + %) o

Fix z,y € R"™ with (z,y) > 0. If f(z) = 0 then obviously f(z)f*(y) <
0% ({z,y)). If, on the other hand, f(x) > 0 then

A
=
&

fla)- fly) = inf —IE <
’ T (1 2)] T sw (14 22)”

- (1+ @’;»)_ﬁ =" ((z,y)).

From Theorem 5 we conclude that indeed

Jir [ (o) ()

Next we analyze the equality case. From Theorem 5 we see that a necessary
condition to have equality is

fl@)=d-p (|Tac|2) = d- Ho(Tx)

for a constant d > 0 and a linear map 7 : R™ — R" (which we may take to be
positive definite if we want). Since f € Cq (R™) we know that

1=f(0)=d-Ho(0)=d-1=d,

so we must have f = Ho o T .
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To see that this condition is also sufficient, notice that for every f € Co (R™)
and every invertible linear map T we have

1

B~ [ o T g1 1
[sgpf(Ty) (1+%> ] = Sgpf(y) (1+<’Ty>>

o n.’L’
(foT)" (z) 3

Q-1

1y B
= |sup F(y) (1 + W) — ((T_l)*x) .

Using a simple change of variables and Proposition 2 we get that if f = Hy o T

then
/f./fﬁ /(HaoT)-/(Hgo(T*)*)
= det(T)-delt((T—l)*) /H“/Hg N (/HQ)Z

so we are done.

Remark 1 For simplicity, Theorem 4 is only stated for even functions. Fradelizi and
Meyer also proved in [11] a generalization of Theorem 5 for non-even functions,
which can be used to extend Theorem 4 to the non-even case. The proof remains
essentially the same, so we leave the details to the interested reader.

To conclude this section, let us compare Theorem 4 with Theorem 3. We have the
following proposition:

Proposition 3 For every f € Cq (R™) we have f* > f*.

Proof Denote ¢ = baseq(f). We need to prove that for every x € R™ we have
fH(x) > f*(x), which is equivalent to

-8
1+ (z,y) _ —pB
inf< B > inf (1 n (z,y) w(y)) .

Y 1+ wgy)

Choose a sequence {yn} such that

-B
14+ (z,Yn)

B
We claim it is always possible to choose this sequence in such a way that (z,yn) >
©(yn) > 0 for every n. Indeed, we know that f*(z) < 1. If f¥(z) < 1 we will
automatically have (x,yn) > ¢(yn) > 0 for large enough n. If f*(x) = 1, just take
yn = 0 for all n.
For every two numbers B > A > 0 we have
1+ B

< —
A SltB-4A
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as one easily checks. Applying this to B = % and A = % we see that

1 foged) (@, 5m) — olm)\ 7 o -
(), (o)

e (Yn
1+ 3

for all n. Sending n — oo we see that f*(z) > f*(z) like we wanted.

This means that for every value of a Theorem 3 follows from Theorem 4. When
a — 0 the transforms * and f coincide, so both theorems reduce to same result -
Theorem 2.

3 Further properties of f-transform

In this section we will discuss further properties of the new f-transform, f :
Ca (R™) — Co (R™) for ¢ < 0. We already used the simple fact that f is or-
der reversing: if f,g € Co (R™) and f < g (pointwise), then f* > g*. Surprisingly,
however, § is not a duality transform, as it is not an involution.

One simple way of verifying the last assertion is by computing a few examples:

Ezample 1 Let K be a convex body containing the origin. Remember that the
gauge function of K is defined by

||x||K:inf{r>0: %eK}.

Let us denote by 1k the indicator function of K. Then a simple calculation gives

-p
* x o
1%:1K:<1+7” E&K> ,

_ 31t
||muK> o 1
(1+ 3 = min 7”17”50,1 .

In particular, we see that lﬂfg # 1k for every a < 0 (equivalently, for every 8 < o).

and

In order to prove more delicate properties of the f-transform, we will need to
examine it from a different point view. Denote by Cvxg (R™) the class of all convex
functions ¢ : R™ — [0, c0] such that ¢ is lower semicontinuous and ¢(0) = 0. The
map baseq : Co (R™) — Cvxo (R™) from Definition 3 is easily seen to be an order
reversing bijection. Hence, if we wish to understand the f-transform, it is enough
to study its conjugate 7o : Cvxo (R™) — Cvxo (R™) which is defined by

To = baseq off 0 (basegl) .
The transform 7, can be written down explicitly:
Proposition 4 For every ¢ € Cvxg (R™) and every x € R™ we have

(7&@) (33) = sup <1’,y> _ go(y) = su <.’£,y> B QO(y) . (3)

yern 1 —ap(y) yeRr 14 %



A sharp Blaschke—Santal6 inequality for a-concave functions 11

In particular we see that 7o = L is the Legendre transform. This also follows from
the fact that on Co (R™) the f-transform and the *-transform coincide.

Proof Let us use equation (3) as the definition of Ta, and check that under this
definition we really have

To = baseq off o (basegl) .

This is of course the same as (basegl) oTa =1fo0 (basea_l). Plugging in all of the
definitions, we need to prove that for every ¢ € Cvxo (R™) and every x € R™

—B
-8B (z,y)
14 L gup ) — ) _-f(1+ B )

B -Sup e (y) _Hyl (v) -8B
v 1+ %5 (1+%)

and checking this equality involves nothing more than simple algebra.

Interestingly, the transforms 7, were introduced and studied by Milman around
1970 for very different applications in functional analysis (see [13], [15] for the orig-
inal papers in Russian and section 3.3 of the survey [14] for a partial translation
to English. The remark in the end of section 3 of [1] is also relevant, but inac-
curate). The only result we will need from these works is the following geometric
characterization of Ta:

Fix a function ¢ € Cvxo (R™). We will use ¢ to construct a function p :
R™ x R — [0, 00] in the following way: first, we define

p (. VB) = E0.

Next, we extend p by requiring it to be 1-homoegeneous. Hence for every x € R"
and t # 0 we define

i =o( s (o)) - 4 ZEECE) Lyl ()

The values of p on the hyperplane t = 0 are not so important, but for concreteness
we will define p(z,0) = lim;_,o+ p(z,t) (the limit exists by the convexity of ¢).

The function p is 1-homoegeneous by construction, but in general it will not
be a norm on R™*!, since there is no reason for p to be convex. Nonetheless, we
can define the “dual” norm

ety = sp LWL
(y,s)ERn+1 p(y,S)

which is always a proper norm on R™*. Now if we restrict ourselves back to the
hyperplane ¢t = g a direct calculation gives

* B+ (Tap) (z)
p* (@, \/B) = — =
VB
which shows the relation between the transform 7, and the classic notion of duality.
Using this construction we can prove several properties of the f-transform.
Specifically we have:
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Theorem 6 Fiz —co < a <0, and let § : Co (R™) — Cqo (R™) be the §-transform.
Then:

1. For every f € Cqo (R™) we have f¥ > f.

2. For every f € Cqo (R™) we have ¥ = f% In other words, § is a duality
transform on its image.

3. § is neither injective nor surjective.

Theorem 6 is an immediate corollary of the following proposition, establishing the
same properties for the transform 7,:

Proposition 5 Fiz —oo < a < 0, and let To : Cvxg (R™) — Cvxo (R™) be the
transform defined above. Then:

1. For every ¢ € Cvxo (R™) we have Ty < ¢.

2. For every ¢ € Cvxo (R™) we have TEp = Tap. In other words, To, is a duality
transform on its image.

3. Ta is neither injective nor surjective.

Proof Fix ¢ € Cvxo (R™), and let p : R*T! — [0, 0] we defined as above. It is well
known that if p is any 1-homogenous function, which is not necessarily convex,
then p** < p. In particular

£t Uav)(2) (7\}5@) @ _ o (@, v/B) < pla, /B) = EEEL),

which proves (1).

Since p* is already a norm, we must have p*** = (p*)** = p*. Restricting again
to the hyperplane t = 3 we see that T2y = Ta, which proves (2).

Next we prove (3), and begin by showing that 7 is not surjective. If ¢ is in
the image of T4, then the above discussion implies that the corresponding p must
be a norm on R™*!. In particular, p must be comparable to the Euclidean norm,
i.e. there exists a constant C' > 0 such that

p(z,t) < Cl(z,t)| = C\/|zf” + 2.

Therefore

o@) =B p(2,VB) =B CVBIal* + 8 < C (VBlal+8),

and we see that every function ¢ in the image of 7o must grow at most linearly.
In particular, the function ¢(z) = |z|? is not in the image of Ta, so 7o is not
surjective.

Finally, we will show that 7T, is also not injective. Take any ¢ € Cvxg (R™)
which is not in the image of To. Then Ty, (’7;2@) = T3¢ = Tap, even though
T2y # . This shows that T, is not injective, and the proof is complete.
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