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We show how algebraic identities, inequalities and constructions, which hold for numbers
or matrices, often have analogs in the geometric classes of convex bodies or convex

functions. By letting the polar body K◦ or the dual function ϕ∗ play the role the inverses
“K−1” and “ϕ−1”, we are able to conjecture many new results, which often turn out to

be correct.

As one example, we prove that for every convex function ϕ one has

(ϕ+ δ)∗ + (ϕ∗ + δ)∗ = δ,

where δ(x) = 1
2
|x|2. We also prove several corollaries of this identity, including a Santal

type inequality and a contribution to the theory of summands. We proceed to discuss the

analogous identity for convex bodies, where an unexpected distinction appears between
the classical Minkowski addition and the more modern 2-addition.

In the final section of the paper we consider the harmonic and geometric means of

convex bodies and convex functions, and discuss their concavity properties. Once again,
we find that in some problems the 2-addition of convex bodies behaves even better than

the Minkowski addition.
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1. Introduction

Denote by Cvx (Rn) the class of all convex and lower semi-continuous functions

ϕ : Rn → (−∞,∞]. If ϕ1, ϕ2 ∈ Cvx (Rn) and λ > 0 we define the functions

ϕ1 + ϕ2, λϕ1 ∈ Cvx (Rn) in the obvious, pointwise, way:

(ϕ1 + ϕ2) (x) = ϕ1(x) + ϕ2(x)

(λϕ) (x) = λϕ(x).

Note that we write λϕ and not λ · ϕ, as we reserve the notation λ · ϕ for another

operation to be defined shortly. The set Cvx (Rn) is obviously a cone with respect

to these operations.

Given ϕ1, ϕ2 ∈ Cvx (Rn) we will write ϕ1 ≤ ϕ2 if ϕ1(x) ≤ ϕ2(x) for all x ∈ Rn.

For a function ϕ ∈ Cvx (Rn) the Legendre transform of ϕ is defined by

ϕ∗(x) = sup
y∈Rn

(〈x, y〉 − ϕ(y)) ,

where 〈·, ·〉 denotes the standard Euclidean product on Rn.

1
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As it turns out, once the order ≤ is given the Legendre transform does not

need to be defined explicitly, but emerges naturally as the “duality transform” on

Cvx (Rn). More explicitly, in [2] and [4] Artstein-Avidan and Milman proved the

following:

Theorem 1.1. Assume T : Cvx (Rn)→ Cvx (Rn) satisfies the following two prop-

erties:

• T is an involution, i.e. T (T ϕ) = ϕ for all ϕ ∈ Cvx (Rn).

• T is order reversing, i.e. ϕ1 ≤ ϕ2 implies that T ϕ1 ≥ T ϕ2.

Then T is the Legendre transform up to linear terms. Explicitly, there exists a

constant C ∈ R, a vector v ∈ Rn, and an invertible symmetric linear transformation

B ∈ GL(n) such that

(T ϕ) (x) = ϕ∗ (Bx+ v) + 〈x, v〉+ C.

Even though our main theorems will be stated for convex functions, we will also

be interested in convex sets. Denote by Kn0 the class of all closed and convex sets

K ⊆ Rn such that 0 ∈ K. One way to produce the structure of an ordered cone

on Kn0 is by embedding Kn0 into Cvx (Rn). The most useful such embedding sends

K ∈ Kn0 to its support function hK ∈ Cvx (Rn), defined by

hK(x) = sup
y∈K
〈x, y〉 .

Hence we define K1 +K2 by the relation hK1+K2 = hK1 + hK2 , λK by the relation

hλK = λhK , and K1 ≤ K2 by the inequality hK1
≤ hK2

. Of course, one can give

more direct definitions: K1 +K2 is the Minkowski addition

K1 +K2 = {x1 + x2 : x1 ∈ K1, x2 ∈ K2} ,

(or, to be completely rigorous, the closure of this set). λK is the dilation

λK = {λx : x ∈ K} ,

and K1 ≤ K2 if and only if K1 ⊆ K2.

Like in the case of convex functions, the order ⊆ automatically produces a

duality transform on Kn0 , which is the polarity transform

K 7→ K◦ = {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K} .

More formally:

Theorem 1.2. Assume T : Kn0 → Kn0 is an order reversing involution. Then

there exists an invertible symmetric linear transformation B ∈ GL(n) such that

TK = BK◦ for all K ∈ Kn0 .

Different people proved such a theorem for different classes of convex sets. For

the class Kn0 the theorem was proven by Artstein-Avidan and Milman in [3]. Similar

theorems on different classes were proven by Gruber ([10]) and by Brczky and
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Schneider ([6]) – as the conditions of the theorem are so weak, slightly changing the

class changes the proof almost completely.

Let us remark that other embeddings of Kn0 into Cvx (Rn) produce other oper-

ations on Kn0 . For example, one may fix p ≥ 1 and map K ∈ Kn0 to hpK ∈ Cvx (Rn).

This embedding gives us the p-addition K1 +p K2 which is defined implicitly by

hpK1+pK2
= hpK1

+hpK2
, and the p-homothety λ·pK which is defined by hpλ·pK = λhpK

(of course, λ ·p K = λ1/pK). The p-addition of convex bodies was introduced by

Firey ([8]) and studied extensively by Lutwak ([13],[14]). Notice that the induced

“p-order” is still the regular inclusion, so the natural duality transform remains

unchanged.

The structure of an ordered cone with a duality transform appears often in math-

ematics, including in less geometric settings. The simplest example is the positive

real numbers R+ themselves, with the usual addition, multiplication and order, and

with the inversion x 7→ 1
x as a duality. Another algebraic example is the class Mn

+

of n × n positive-definite matrices. Here the addition and multiplication by scalar

are the obvious choices, and the order is the matrix order �, that is M1 � M2 if

M2 −M1 is positive definite. The duality is the matrix inversion M 7→M−1.

The main goal of this paper is to observe some surprising similarities between

the algebraic classes of numbers and matrices and the geometric classes of convex

functions and convex sets. We will think of the dual function ϕ∗ or the dual body

K◦ as the “inverses” ϕ−1 and K−1, and this intuition will allow us to conjecture

new results in convexity. Once conjectured, these results are often not difficult to

prove.

To illustrate this point of view let us consider one known example. For two

numbers x, y > 0 the harmonic mean of x and y is
(
x−1+y−1

2

)−1
, and it is well

known that the harmonic mean is always smaller than the arithmetic mean, that is

x+ y

2
≥
(
x−1 + y−1

2

)−1
.

It is fairly easy to prove a similar result for positive-definite matrices: for every

M,N ∈Mn
+ we have

M +N

2
�
(
M−1 +N−1

2

)−1
.

What are the geometric analogs of this algebraic result? For convex sets, Firey

established in [7] that for every K,T ∈ Kn0 one has

K + T

2
⊇
(
K◦ + T ◦

2

)◦
.

In fact, in his paper Firey writes that “This may be viewed as the analogue, for

convex bodies, of the theorem of the arithmetic and harmonic means for positive

numbers”.
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Finally, for convex functions, the analogous result is more or less folklore. For

every “reasonable” ϕ,ψ ∈ Cvx (Rn) one has

(ϕ∗ + ψ∗)
∗

(x) = (ϕ�ψ) (x) = inf
y+z=x

(ϕ(y) + ψ(z)) .

The operation ϕ�ψ is known as the infimal convolution of ϕ and ψ. The word “rea-

sonable” above comes from the fact that ϕ�ψ need not be lower semi-continuous,

even if ϕ and ψ are. As this technicality will have no impact on our discussion we

ignore it, and refer the reader to section 1.6.2 of [18] for a more careful discussion

of this topic.

Similarly, for every ϕ ∈ Cvx (Rn) and every λ > 0

(λϕ)
∗

(x) = λϕ∗
(x
λ

)
.

As is sometimes customary, we will write (λϕ)
∗

= λ · ϕ∗ and warn the reader not

to confuse the two possible multiplications.

Once these facts are established we evidently have

ϕ+ ψ

2
≥
(
ϕ∗ + ψ∗

2

)∗
,

since (
ϕ∗ + ψ∗

2

)∗
(x) =

[
1

2
· (ϕ�ψ)

]
(x) =

1

2
(ϕ�ψ) (2x).

=
1

2
inf

y+z=2x
(ϕ(y) + ψ(z)) ≤ ϕ(x) + ψ(x)

2

Hence we see that in this example the analogy is perfect, and the same basic inequal-

ity holds for positive numbers, positive-definite matrices, convex sets and convex

functions.

Another interesting example of treating K◦ and ϕ∗ as inverses can be found

in a recent paper by Molchanov ([16]), where he constructs continued fractions of

convex sets and convex functions and uses them to solve “body valued quadratic

equations”.

In the next two sections we will explore two new results that follow from the

same philosophy. In the next section we will prove a simple yet surprising identity,

with an unexpected application to Santal type inequalities. In Section 3 we will

return to means of convex sets and convex functions and discuss their concavity

properties.

2. A new identity

Notice the following trivial fact: for every x > 0 one has

1

x+ 1
+

1
1
x + 1

= 1.
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From here it is easy to prove a similar result for matrices: for every M ∈ Mn
+ one

has

(M + I)
−1

+
(
M−1 + I

)−1
= I,

where I denotes of course the identity matrix.

In order to understand the counterpart of this algebraic fact for convex functions,

we need to understand which function δ ∈ Cvx (Rn) plays the role of 1 or I. The

number 1 can be characterized as the only positive solution of x−1 = x. Similarly,

I may be characterized as the only matrix X ∈Mn
+ such that X−1 = X. Hence we

define δ to be the only solution of the equation ϕ∗ = ϕ. This solution is δ(x) = 1
2 |x|

2
,

where |·| denotes the Euclidean norm. Our theorem then reads:

Theorem 2.1. For every ϕ ∈ Cvx (Rn) one has

(ϕ+ δ)
∗

+ (ϕ∗ + δ)
∗

= δ.

Proof. Write ρ = (ϕ+ δ)
∗

+(ϕ∗ + δ)
∗
. On the one hand, directly by the definition

of the Legendre transform, we may write

ρ(x) = sup
y

(
〈x, y〉 − ϕ(y)− |y|

2

2

)
+ sup

z

(
〈x, z〉 − ϕ∗(z)− |z|

2

2

)

= sup
y,z

(
〈x, y + z〉 − ϕ(y)− ϕ∗(z)− |y|

2

2
− |z|

2

2

)
.

On the other hand, we have

(ϕ∗ + δ)
∗

= (ϕ∗ + δ∗)
∗

= ϕ�δ

(ϕ+ δ)
∗

=
(
(ϕ∗)

∗
+ δ∗

)∗
= ϕ∗�δ.

Hence we can also write

ρ(x) = inf
y

(
ϕ(y) +

|x− y|2

2

)
+ inf

z

(
ϕ∗(z) +

|x− z|2

2

)

= inf
y.z

(
ϕ(y) +

|x|2 − 2 〈x, y〉+ |y|2

2
+ ϕ∗(z) +

|x|2 − 2 〈x, z〉+ |z|2

2

)

= |x|2 − sup
y,z

(
〈x, y + z〉 − ϕ(y)− ϕ∗(z)− |y|

2

2
− |z|

2

2

)
= |x|2 − ρ(x).

From here we immediately obtain ρ(x) = 1
2 |x|

2
= δ(x) and the proof is complete.

Let us state one corollary of this theorem:

Theorem 2.2. Let γn be the standard Gaussian measure on Rn, i.e.

γn(A) =
1

(2π)
n/2

∫
A

e−|x|
2/2dx.



February 14, 2016 16:42 WSPC/INSTRUCTION FILE CCM

6 Liran Rotem

Then for every ϕ ∈ Cvx (Rn) one has∫
e−ϕdγn ·

∫
e−ϕ

∗
dγn ≤

(∫
e−δdγn

)2

.

Before we prove Theorem 2.2, let us put it in some perspective. In [11], Klartag

proves that if ϕ ∈ Cvx (Rn) is even, then for every even log-concave measure µ on

Rn one has ∫
e−ϕdµ ·

∫
e−ϕ

∗
dµ ≤

(∫
e−δdµ

)2

.

Our theorem is just the special case µ = γn. Surprisingly, however, our theorem

holds for functions ϕ that are not necessarily even, and there is no need to translate

ϕ.

Proof. Define ψ(x) = 1
2ϕ
(√

2x
)
, and notice that ψ∗(x) = 1

2ϕ
∗ (√2x

)
. Applying

Theorem 2.1 for ψ instead of ϕ we have

(ψ + δ)
∗

+ (ψ∗ + δ)
∗

= δ,

and by applying duality to both sides we obtain

(ψ + δ)� (ψ∗ + δ) =
[
(ψ + δ)

∗
+ (ψ∗ + δ)

∗]∗
= δ∗ = δ.

Define f, g ∈ Cvx (Rn) by f = 2 · (ψ + δ) and g = 2 · (ψ∗ + δ). Explicitly this means

that

f(x) = 2
(
ψ
(x

2

)
+ δ

(x
2

))
= ϕ

(
x√
2

)
+ δ

(
x√
2

)
g(x) = 2

(
ψ∗
(x

2

)
+ δ

(x
2

))
= ϕ∗

(
x√
2

)
+ δ

(
x√
2

)
.

Since
(
1
2 · f

)
�
(
1
2 · g

)
= δ we may apply the Prkopa-Leindler (see, e.g., Theorem

7.1.2 of [18]) inequality and obtain∫
e−f(x)dx ·

∫
e−g(x)dx ≤

(∫
e−δ(x)dx

)2

.

Applying the change of variables x =
√

2y to both sides and dividing both sides by

(2π)
n

one obtains the result.

Before moving on to discuss convex sets, let us show one possible extension of

Theorem 2.1. For functions ϕ1, ϕ2 ∈ Cvx (Rn) we say that ϕ1 is a summand if ϕ2

if there exists ϕ3 ∈ Cvx (Rn) such that ϕ1 + ϕ3 = ϕ2. In other words, ϕ1 is a

summand of ϕ2 if ϕ2 − ϕ1 ∈ Cvx (Rn). Theorem 2.1 immediately implies that if δ

is a summand of ϕ, then ϕ∗ is a summand of δ. As the next theorem shows, the

converse of this statement is also true:

Theorem 2.3. Fix ϕ ∈ Cvx (Rn). Then δ is a summand of ϕ if and only if ϕ∗ is

a summand of δ.
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Proof. As mentioned above, the “only if” follows immediately from Theorem 2.1.

Indeed, if δ is a summand of ϕ then ϕ = ψ + δ for some ψ ∈ Cvx (Rn). It follows

that

ϕ∗ + (ψ∗ + δ)
∗

= (ψ + δ)
∗

+ (ψ∗ + δ)
∗

= δ

and ϕ∗ is a summand of δ.

For the other implication, assume that ϕ∗ is a summand of δ, so δ−ϕ∗ is convex.

Since ϕ is lower semi-continuous and δ is continuous the function ϕ−δ is also lower

semi-continuous, and we only need to prove that ϕ−δ is convex. Convexity of δ−ϕ∗
implies that for every z, w ∈ Rn and every 0 < λ < 1 one has

δ (λz + (1− λ)w)−ϕ∗ (λz + (1− λ)w) ≤ λ (δ(z)− ϕ∗(z))+(1−λ) (δ(w)− ϕ∗(w)) .

Simplifying, this implies that

ϕ∗ (λz + (1− λ)w) +
λ(1− λ)

2
|z − w|2 ≥ λϕ∗(z) + (1− λ)ϕ∗(w).

Now, fix x, y ∈ Rn and 0 < λ < 1. Writing ψ = ϕ − δ = ϕ∗∗ − δ, and denoting

λψ (x) + (1− λ)ψ(y) by ψλ, we have

ψλ = λ sup
z

[〈x, z〉 − ϕ∗(z)] + (1− λ) sup
w

[〈y, w〉 − ϕ∗(w)]− λδ(x)− (1− λ)δ(y)

= sup
z,w

[λ 〈x, z〉+ (1− λ) 〈y, w〉 − (λϕ∗(z) + (1− λ)ϕ∗(w))]− λδ(x)− (1− λ)δ(y)

≥ sup
z,w

[
λ 〈x, z〉+ (1− λ) 〈y, w〉 − ϕ∗ (λz + (1− λ)w)− λ(1− λ)

2
|z − w|2

]
−λδ(x)− (1− λ)δ(y)

To simplify this expression we make a change of variables u = λz + (1 − λ)w and

v = z − w. We have z = u+ (1− λ)v and w = u− λv, so

ψλ ≥ sup
u,v

[
λ 〈x, u〉+ λ(1− λ) 〈x, v〉+ (1− λ) 〈y, u〉 − λ(1− λ) 〈y, v〉

−λ(1− λ)

2
|v|2 − λ |x|

2

2
− (1− λ)

|y|2

2
− ϕ∗(u)

]

= sup
u,v

[
〈λx+ (1− λ)y, u〉 − λ(1− λ)

2
(x− y − v)

2 − |λx+ (1− λ)y|2

2
− ϕ∗(u)

]
.

Now the supremum is obviously attained when v = x− y and we are left with

ψλ ≥ sup
u

[〈λx+ (1− λ)y, u〉 − ϕ∗(u)]− |λx+ (1− λ)y|2

2

= ϕ∗∗ (λx+ (1− λ)y)− δ(λx+ (1− λ)y)

= ψ(λx+ (1− λ)y).

Hence ψ is convex, and the proof is complete.
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Remark 2.1. If one ignores questions of smoothness, it is possible to give a more

transparent proof of Theorem 2.3. Indeed, assume that ϕ and ϕ∗ are both smooth.

Convexity of δ − ϕ∗ is then equivalent to the requirement that ∇2ϕ∗(y) � I for all

y ∈ Rn. Similarly, convexity of ϕ − δ is equivalent to ∇2ϕ(x) � I for all x ∈ Rn.

Since

∇2ϕ∗(y) =
[
∇2ϕ (∇ϕ∗(y))

]−1
,

and since the map A 7→ A−1 is order reversing on Mn
+, the theorem follows imme-

diately.

Remark 2.2. It follows from the above discussion that the map

ϕ 7→ (ϕ∗ + δ)
∗

is an order preserving bijection between Cvx (Rn) and the class of convex summands

of δ. The standard duality relation ψ ↔ ψ∗ on Cvx (Rn) corresponds under this map

the the obvious duality ϕ↔ δ−ϕ on the class of summands. Furthermore, using this

map one can deduce from Theorem 1.1 a theorem characterizing all order-reversing

involutions on the class of summands.

We conclude this section by discussing convex sets, for which the situation is

a bit more complicated. Notice that in Theorem 1.2 there was no mention of an

addition operation on Kn0 - the polarity map K 7→ K◦ is uniquely and naturally

defined given no other structure except the inclusion. So, while there is only one

reasonable candidate for the inversion operation, there are many possible candidates

for the addition operation. Usually in convexity the natural choice is the Minkowski

addition, but it turns out that the 2-addition is better behaved in our case:

Theorem 2.4. For every K ∈ Kn0 one has

(K +2 D)
◦

+2 (K◦ +2 D)
◦

= D.

Here D denotes the unit Euclidean ball and +2 is the 2-sum as defined in the

introduction.

Proof. Simply apply Theorem 2.1 to ϕ = 1
2h

2
K . Using the fact that

(
1
2h

2
A

)∗
=

1
2h

2
A◦ , the definition of the 2-addition and the fact that δ = 1

2h
2
D, one gets

1

2
h2(K+2D)◦+2

1

2
h2(K◦+2D)◦ =

1

2
h2D,

and the result follows.

Since the Minkowski addition appears much more often in convexity than the

2-addition, it may seem reasonable to conjecture that Theorem 2.4 remains true if

the 2-sum is replaced by the more conventional 1-sum:

(K +D)
◦

+ (K◦ +D)
◦

= D. (2.1)
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Numerical evidence seems to suggest that this is true when K is a “symmetric

enough” planar convex set. For example, when taking the unit square Q = [−1, 1]2

we indeed have

(Q+D)
◦

+ (Q◦ +D)
◦

= D,

as can be seen in Figure 1.

Fig. 1. Checking the identity for Q = [−1, 1]2

However, it turns out that in general the identity (2.1) is false. As a

counterexample, take K = {0} × Rn−1 ∈ Kn0 . In this case a direct computation

shows that

T = (K +D)
◦

+ (K◦ +D)
◦

= [−1, 1]×Dn−1,

where Dn−1 is the unit Euclidean ball in dimension n− 1.

Notice that we still have T ⊆
√

2D, and this is not a coincidence: for every

A,B ∈ Kn0 one has

A+2 B ⊆ A+B ⊆
√

2 · (A+2 B) ,

so from Theorem 2.4 we immediately obtain that for every K ∈ Kn0 one has

1√
2
D ⊆ (K +D)

◦
+ (K◦ +D)

◦ ⊆
√

2D.

I do not have a satisfactory explanation for the fact that (2.1) seems to hold for

the square and other planar bodies with many symmetries.

Finally, we note that Theorem 2.3 also yields a corollary for convex sets, in

exactly the same way that Theorem 2.1 yields Theorem 2.4. We say that A ∈ Kn0 is

a 2-summand of B ∈ Kn0 if there exists C ∈ Kn0 such that A+2 C = B. The result

then reads:
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Corollary 2.1. Fix K ∈ Kn0 . Then D is a 2-summand of K if and only if K◦ is a

2-summand of D.

When 2-summands are replaced with 1-summands (simply known as summands)

the situation is different. In one direction, Hug proved in his Habilitationsschrift

(habilitation thesis) that if K◦ is a summand of D then D is a summand of K. A

proof of this result now appears as Proposition A.3 in [9]. The opposite direction,

however, is false. To see this, notice that

D +
(
{0} × Rn−1

)
= [−1, 1]× Rn−1,

so D is a summand of K = [−1, 1] × Rn−1, even though K◦ = [−1, 1] × {0}n−1 is

not a summand of D.

3. Concavity of means

For positive real numbers x, y > 0, one may consider their arithmetic mean
1
2 (x+ y), their harmonic mean

[
1
2

(
x−1 + y−1

)]−1
, and their geometric mean

√
xy.

Viewed as functions (R+)
2 → R+, it is easy to check that all three means are

concave functions.

For positive-definite matrices, the situation is a bit more complicated. The

arithmetic and harmonic mean are easy to define as A(M,N) = 1
2 (M +N) and

H(M,N) =
[
1
2

(
M−1 +N−1

)]−1
. The geometric mean however is less obvious –√

MN is not the correct definition, as the product MN is in general not positive-

definite and so its square root is not well defined. It turns out that the correct

definition is

G(M,N) = M
1/2
(
M−

1/2NM−
1/2
)1/2

M
1/2.

This definition was first given by Pusz and Woronowicz ([17]), who also proved that

G is concave. See [1] for a more readable proof of the concavity of H and G, and

see [12] for a survey explaining why G is the “correct” definition of the geometric

mean of positive-definite matrices.

For convex sets K,T ∈ Kn0 , their arithmetic mean is of course A(K,T ) =
1
2 (K + T ) and their harmonic mean is H(K,T ) =

(
1
2 (K◦ + T ◦)

)◦
, as explained

in the introduction. The geometric mean of convex sets is a more delicate construc-

tion that was defined in [15]. We say that K ∈ Kn0 is a convex body (and not

just a convex set) if K is compact and contains 0 at its interior. For given bodies

K,T ∈ Kn0 , one looks at the sequences {An}∞n=0 and {Hn}∞n=0 defined by

A0 = K H0 = T

An+1 =
An +Hn

2
Hn+1 =

(
A◦n +H◦n

2

)◦
.

The sequences {An}∞n=1 and {Hn}∞n=1 converge to a common limit, which we call

the geometric mean of K and T and denote by G(K,T ).
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In [15] it is established that the geometric mean of convex bodies shares many

of the basic properties of the geometric mean of numbers and matrices. As it turns

out, concavity is not one of those properties:

Theorem 3.1. For convex sets, neither the harmonic mean H nor the geometric

mean G are concave functions of their arguments

Proof. We will give counterexamples in dimension n = 2. Let us denote the unit

ball of the `p norm on R2 by B2
p (so B2

∞ = [−1, 1]
2

and B2
2 = D).

For the harmonic mean, take

A1 = R× {0} A2 = B2
∞

B1 = B2
∞ B2 = {0} × R.

Then

H

(
A1 +B1

2
,
A2 +B2

2

)
= H

(
R×

[
−1

2
,

1

2

]
,

[
−1

2
,

1

2

]
× R

)
= B2

1 ,

while

H(A1, A2) +H(B1, B2)

2
=

([−2, 2]× {0}) + ({0} × [−2, 2])

2
= B2

∞.

Since B2
1 6⊇ B2

∞ we found our counterexample. If one wants a counterexample with

proper bodies, just approximate A1 and B2 with such bodies in an arbitrary way.

For the geometric mean the computations are a bit more complicated. We fix

ε > 0 and define

A1 =
[
− 1
ε ,

1
ε

]
×
[
ε3, ε3

]
A2 = [−ε, ε]2

B1 = [−ε, ε]2 B2 =
[
ε3, ε3

]
×
[
− 1
ε ,

1
ε

]
.

In [15] it is proved that

d

(
G

(
[−R,R]×

[
− 1

R
,

1

R

]
,

[
− 1

R
,

1

R

]
× [−R,R]

)
, B2

2

)
≤
√

1 +
1

R2
, (3.1)

where d denotes the geometric distance between convex bodies. Denoting R = 1
ε

and applying the linear map Tε(x, y) =
(
x, ε2y

)
to all of the bodies we obtain

d
(
G (A1, A2) , Tε

(
B2

2

))
≤
√

1 + ε2,

which implies that G(A1, A2) → [−1, 1] × {0} as ε → 0. Similarly we have

G(B1, B2)→ {0} × [−1, 1] as ε→ 0.

On the other hand, it follows again from (3.1) that

G

(
A1 +A2

2
,
B1 +B2

2

)
=

1 + ε2

2
G

([
−1

ε
,

1

ε

]
× [−ε, ε] , [−ε, ε]×

[
−1

ε
,

1

ε

])
→ 1

2
B2

2

as ε→ 0.

We see that the concavity inequality

G

(
A1 +A2

2
,
B1 +B2

2

)
⊇ G(A1, A2) +G(B1, B2)

2
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becomes, as ε → 0, the incorrect inequality 1
2B

2
2 ⊇ 1

2B
2
∞. It follows that for some

small enough ε > 0 we obtain the desired counterexample.

Things become better when one consider the geometric mean of convex functions

instead of convex bodies. For given ϕ,ψ ∈ Cvx (Rn) we look at the sequences

{αn}∞n=0 , {ηn}∞n=0 defined by

α0 = ϕ η0 = ψ

αn+1 =
αn + ηn

2
ηn+1 =

(
α∗n + η∗n

2

)∗
.

If the functions ϕ,ψ are everywhere finite then these sequences will converge to a

common limit, with essentially the same proof as the proof of convergence for bodies:

the sequence {αn}∞n=1 is decreasing and bounded from below by η1, the sequence

{ηn}∞n=1 is increasing and bounded from above by α1, so both sequences converge

(pointwise). The relation αn+1 = 1
2 (αn + ηn) and the fact that our functions our

finite implies that the limits coincide. We denote this limit by G(ϕ,ψ) and call it

the geometric mean of ϕ and ψ.

Perhaps the most interesting case to consider is the case ϕ = hpK and ψ = hpT
for some convex bodies K and T and some p ≥ 1. In fact, when p = 2 this was

studied by Asplund ([5]) much before [15].

As it turns out, means of convex functions are better behaved than means of

convex bodies:

Theorem 3.2.

(1) The harmonic mean of convex functions is concave. More explicitly, fix

ϕ0, ϕ1, ψ0, ψ1 ∈ Cvx (Rn) and 0 < λ < 1. Define ϕλ = (1 − λ)ϕ0 + λϕ1 and

ψλ = (1− λ)ψ0 + λψ1. Then

H (ϕλ, ψλ) ⊇ (1− λ) ·H (ϕ0, ψ0) + λH(ϕ1, ψ1).

(2) The geometric mean of convex functions is concave. In the same notations as

above, we have

G (ϕλ, ψλ) ⊇ (1− λ) ·G (ϕ0, ψ0) + λG(ϕ1, ψ1)

whenever all the geometric means in this expression are well defined.

Proof.

(1) As explained in the introduction,

[H(ϕ,ψ)] (x) =

[
1

2
· (ϕ�ψ)

]
(x) =

1

2
inf

y+z=2x
(ϕ(y) + ψ(z)) .
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Hence we have

H (ϕλ, ψλ) (x) =
1

2
inf

y+z=2x
[(1− λ)ϕ0(y) + λϕ1(y) + (1− λ)ψ0(z) + λψ1(z)]

≥ 1

2
inf

y+z=2x
u+v=2x

[(1− λ)ϕ0(y) + λϕ1(u) + (1− λ)ψ0(z) + λψ1(v)]

=
1

2

[
(1− λ) inf

y+z=2x
(ϕ0(y) + ψ0(z)) + λ inf

u+v=2x
(ϕ1(u) + ψ1(v))

]
= [(1− λ)H(ϕ0, ψ0) + λH (ϕ1, ψ1)] (x),

so H is concave.

(2) Consider the function F : Cvx (Rn)
2 → Cvx (Rn)

2
defined by

F (ϕ,ψ) =

(
ϕ+ ψ

2
,

(
ϕ∗ + ψ∗

2

)∗)
.

By (1) we know that F is concave, meaning each of its components is concave.

It is also trivial to see that each of the components of F is monotone increasing

in its arguments.

From these two facts, it follows that F (2) = F ◦F is concave and increasing:

we have

F (ϕλ, ψλ) ≥ (1− λ) · F (ϕ0, ψ0) + λF (ϕ1, ψ1)

(again, ≥ means component-wise comparison), so

F (2) (ϕλ, ψλ) ≥ F ((1− λ) · F (ϕ0, ψ0) + λF (ϕ1, ψ1))

≥ (1− λ)F (2) (ϕ0, ψ0) + λF (2) (ϕ1, ψ1)

and F (2) is concave. The fact that F (2) is increasing is even easier.

Proceeding by induction, we see that F (m) = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
m times

is concave and

increasing for every m ≥ 1. But then

F̃ (ϕ,ψ) = lim
m→∞

F (m)(ϕ,ψ) = (G(ϕ,ψ), G(ϕ,ψ))

is also concave and increasing. In particular, G is concave.

Like in the previous section, the result for functions gives a result for 2-sum

of convex bodies. For convex bodies K and T we define their 2-geometric mean

G2(K,T ) as the joint limit of

A0 = K H0 = T

An+1 =
An +2 Hn√

2
Hn+1 =

(
A◦n +2 H

◦
n√

2

)◦
.

Prop 3.1. G2 is 2-concave: For every convex bodies K0,K1,T0 and T1

G2 (Kλ, Tλ) ⊇
√

1− λG2(K0, T0) +2

√
λG2(K1, T1),

where Kλ =
√

1− λK0 +2

√
λK1 and Tλ =

√
1− λT0 +2

√
λT1.

Proof. Apply Theorem 3.2 to ϕi = 1
2h

2
Ki

, ψi = 1
2h

2
Ti

, i = 0, 1.
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