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1. Introduction

One of the most fundamental theorems in convex geometry is Minkowski’s theorem

on polynomiality of volume. To explain this theorem, let us denote by Kn0 the class

of all closed convex sets K in Rn such that 0 ∈ K (this last condition is not

important right now, but will be used extensively later). For A,B ∈ Kn0 , we define

their Minkowski sum to be

A+B = {a+ b : a ∈ A, b ∈ B} .

Similarly, if A ∈ Kn0 and λ > 0, we define the homothety λA as

λA = {λa : a ∈ A} .

Under these definitions we have all of the expected equalities, such as λA + µA =

(λ+ µ)A.

Finally, if A ∈ Kn0 we denote by |A| ∈ [0,∞] its (Lebesgue) volume.

We are now ready to state:

1
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Theorem 1.1 (Minkowski). Fix A1, A2, . . . , Am ∈ Kn0 . Then the function F :

(R+)
m → [0,∞], defined by

F (λ1, λ2, . . . , λm) = |λ1A1 + λ2A2 + · · ·+ λmAm| ,

is a homogenous polynomial of degree n, with positive coefficients.

The coefficients of the polynomial F are known as mixed volumes (after a proper

normalization). Since our sets A ∈ Kn0 may have infinite volume, some of these

coefficients may be +∞. This does not cause a problem, as long as we adopt the

convention that 0 · ∞ = 0. For a proof of Minkowski’s theorem, as well as more

information about mixed volumes, see chapter 5 of [12].

There are many other interesting addition operations on convex sets other than

the Minkowski addition, and we will give several such examples in the next section.

While these operations are definitely important, and some of them even yielded an

entire theory (such as the “Lp-Brunn Minkowski theory”), they do not satisfy a

theorem analogous to Minkowski’s. Hence, a natural question presents itself: Does

polynomiality of volume characterize the Minkowski addition uniquely? In other

words, assume we are given some addition operation ⊕, and the corresponding

homothety operation � (this notions will be made exact in the next section). If

F (λ1, λ2, . . . , λm) = |(λ1 �A1)⊕ (λ2 �A2)⊕ · · · ⊕ (λm �Am)|

is always a polynomial, does it follow that ⊕ must be the Minkowski addition?

The situation becomes even more complicated when one replaces sets with func-

tions. In recent years, there was a surge of interesting results in convex geometry

and geometric analysis, which were obtained by extending the class of convex sets

to a larger class of functions, satisfying a convexity assumption. The most standard

choice of such a class seems to be the class of log-concave functions: these are the

functions f : Rn → [0,∞) such that (− log f) is a convex function. Let us denote

by LC0 (Rn) the class of all log-concave functions which are upper semi-continuous

and which satisfy

max f = f(0) = 1.

On the class LC0 (Rn) there are even more possible addition operations then on

the class Kn0 . Again, for the vast majority of these sums there will be no analog of

Minkowski’s theorem. Recently, we introduced a new sum ⊕ on LC0 (Rn) (and in

fact, on the larger class of quasi-concave functions), for which we have polynomiality:

the integral ∫
((λ1 � f1)⊕ (λ2 � f2)⊕ · · · ⊕ (λm � fm))

is a polynomial in λ1, λ2, . . . , λm (see [9],[10]). Of course, the same question now

presents itself: Does this property characterizes ⊕ uniquely?

In this paper we will answer this question in the affirmative for the classical

case of convex sets. We will show that under some minimal conditions, natural for
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the notion of addition, the only addition which satisfies Minkowski’s theorem is the

Minkowski sum. We will also give two other such characterization theorems: the

first will characterize the addition ⊕ by its induced homothety �, assuming very

little on ⊕. The second will impose another list of natural conditions on ⊕, but

assume nothing on �.

Let us note that a recent paper by Gardner, Hug and Weil also characterizes

additions of convex sets ([4]). Their results are not directly comparable to ours, as

the homothety operation they consider is the standard (“Minkowski”) homothety

λA, and not the homothety which corresponds to the addition operation. Addition-

ally, we think that some of the conditions they impose are too restrictive. We will

give more information about this in the next section.

In most of this paper, we will use Kn0 as our domain. In the last section, we

will explain how our results can also be extended to additions on Kn0,c - the class

of compact sets inside Kn0 . One can also modify our proofs to deal with the case of

origin symmetric convex sets, compact or not, but as the proofs are so similar to

the non-symmetric case we will not do so here.

2. Addition operations on convex bodies

In this note we are mainly interested in different “additions” on the class Kn0 :

Definition 2.1. An addition operation on Kn0 is a map ⊕ : Kn0 × Kn0 → Kn0 such

that

(1) ⊕ is associative and has a two-sided identity element (i.e. there exists K ∈ Kn0
such that A⊕K = K ⊕A = A for all A ∈ Kn0 ).

(2) ⊕ is monotone: If A1 ⊆ B1 and A2 ⊆ B2, then A1 ⊕A2 ⊆ B1 ⊕B2.

Before we can state our main theorems, we need to describe a few important

examples of such additions.

To begin, let us fix a Euclidean structure on Rn. Remember that to any convex

set A ∈ Kn0 we may associate a function hA : Rn → [0,∞] called the support

function of A, and defined by

hA(θ) = sup
x∈A
〈x, θ〉 .

It is well-known that hA is convex, positively homogeneous and lower semicon-

tinuous. In the other direction, every convex, positively homogeneous and lower

semicontinuous f : Rn → [0,∞] is of the form hA for some A ∈ Kn0 (for proofs of

these basic results, see e.g. section 13 of [11], or section 1.7.1 of [12] in the case that

A is compact).

Hence we may define:

Definition 2.2. The p-addition of A and B is defined by the relation

hA+pB(θ) = (hA(θ)p + hB(θ)p)
1
p .
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p-sums of convex bodies were introduced by Firey ([3]) and studied extensively

by Lutwak, who developed the so-called “Lp Brunn-Minkowski theory” (beginning

with [7] and [8]). An organized discussion of these topics also appears in chapter 9

of [12]. We will only need the basic fact that +p is an addition on Kn0 (in particular,

it preserves convexity) as long as p ≥ 1.

Of particular interest is the case p = 1, where the body A+1 B is the closure of

the Minkowski sum A+B:

A+1 B = {a+ b : a ∈ A, b ∈ B}.

This closure is necessary because A + B may not be closed, even if A and B are.

Of course, if at least one of the sets A and B is compact, then A+1 B = A+B.

As another example of an addition on convex bodies we define:

Definition 2.3. The ∞-addition of A and B is the closure of the convex hull of

A ∪B:

A+∞ B = conv (A ∪B)

Notice that

hA+∞B(θ) = max {hA(θ), hB(θ)} = lim
p→∞

hA+pB(θ),

which explains the name we use for this addition.

In order to define some more additions on Kn0 we need the definition of the polar

body. Remember that if A ∈ Kn0 then

A◦ = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ A} ∈ Kn0 .

Polarity is an order reversing involution on Kn0 . Here “order reversing” means

that if A ⊆ B then A◦ ⊇ B◦. “Involution” means, of course, that A◦◦ = A (for a

proof see section 1.6.1 of [12]). By these properties, it is easy to see that if ⊕ is an

addition on Kn0 , so is its “polar” �, defined by

A�B = (A◦ ⊕B◦)◦ .

In particular, we may define:

Definition 2.4. The (−p)-addition of A and B is defined by

A+(−p) B = (A◦ +p B
◦)
◦
.

By the above discussion, +−p is an addition operation on Kn0 for every p ≥ 1. These

additions were also defined by Firey ([2]) and developed by Lutwak ([8]). Again, a

short discussion appears in chapter 9 of [12].

As a final addition operation we have

Definition 2.5. The (−∞)-addition of A and B is just their intersection A ∩B.

The reason for the name is the relation

A+(−∞) B = (A◦ +∞ B◦)
◦
.
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In [4] Gardner, Hug and Weil characterize additions on convex sets. Let us give

an example of their results. We denote by Kns the class of compact, origin-symmetric,

convex sets in Rn. An operation ⊕ : Kns × Kns → Kns is called projection covariant

if for every subspace E ⊆ Rn we have

PE (A⊕B) = PEA⊕ PEB.

Here PE : Rn → E denotes the orthogonal projection. One of the main results of

[4] then reads:

Theorem 2.1. If ⊕ : Kns ×Kns → Kns is associative and projection covariant, then

⊕ = +p for some 1 ≤ p ≤ ∞ (up to three trivial exceptions).

For us, the condition that ⊕ is projection covariant seems too restrictive, as

this condition immediately implies that for every θ ∈ Sn−1, hA⊕B(θ) depends only

on hA(θ) and hB(θ). Hence, for example, it automatically excludes all p-additions

for negative values of p (these additions are characterized in [4] by independent

theorems, assuming section covariance). Instead, we would like to follow a different

path, and characterize additions by other properties, which we feel are weaker and

more natural to impose.

In our first main theorem, we will characterize additions on Kn0 by their induced

homothety operation. In order to explain this point of view, notice that for any

addition ⊕ on Kn0 , we may define a corresponding homothety operation: for every

natural number m we define

m�A = A⊕A⊕ · · · ⊕A︸ ︷︷ ︸
mtimes

.

Let us denote the homothety corresponding to +p by ·p. Remember that we also

defined

λA = {λx : x ∈ A}

for any λ > 0 (which may or may not be a natural number). It is straightforward

to check that for every p we have

m ·p A = m
1
pA. (2.1)

The first theorem of this note proves that for every p equation 2.1 characterizes

the p-addition uniquely. In fact, we will prove something a bit stronger:

Theorem 2.2. Let ⊕ : Kn0 × Kn0 → Kn0 be an addition operation. Assume there

exists a function f : N → R+ such that m � A = f(m)A for every A ∈ Kn0 and

every integer m. Then:

(1) If f is not the constant function 1, then there exists p 6= 0 such that A ⊕ B =

A+p B for every A,B ∈ Kn0 . If n ≥ 2 then 1 ≤ |p| <∞.

(2) If f ≡ 1 and the identity element of ⊕ is {0}, then A⊕B = A+∞ B for every

A,B ∈ Kn0 . Similarly, if the identity element is Rn then A⊕B = A+(−∞) B.



February 24, 2014 21:6 WSPC/INSTRUCTION FILE paper

6 Vitali Milman and Liran Rotem

(3) In dimension n = 1 there exists an addition ⊕ on K1
s for which f ≡ 1, but the

identity element of ⊕ is neither {0} nor R.

We do not know if an example similar to (3) exists in dimension n ≥ 2.

It is interesting to notice that even though we never assumed ⊕ is commutative,

we obtain this fact as a corollary of the theorem. A similar phenomenon appeared

in the results of Gardner, Hug and Weil such as Theorem 2.1 that we mentioned

before.

In the next section we will prove the theorem under the assumption that f(2) >

1. The remaining cases will be deduced in the short section 4. Let us mention that

a straightforward modification of our proof will give the same result for additions

on origin symmetric (not necessarily compact) convex bodies.

Our next goal is to characterize the Minkowski addition using Minkowski’s poly-

nomiality theorem. In fact, we will assume a little less:

Definition 2.6. We say that ⊕ : Kn0 ×Kn0 → Kn0 is polynomial if for every A,B ∈
Kn0 we can write

|(s�A)⊕ (t�B)| =
d∑

i,j=0

cijs
itj

for all integers s, t ∈ N. Here d = d(A,B) ∈ N is some number which may

depend on A and B, and cij = cij(A,B) ∈ (−∞,∞] are some coefficients that also

depend on A and B.

Note that we must allow the coefficients to attain the value +∞. We also allow

them to be negative, but we do not allow the value −∞, as this may lead to

ambiguities such as∞−∞. Definition 2.6 has a similar counterpart in [4]. However,

the definitions are not equivalent, since we are using the induced homothety � in

our definition.

We want to prove that the Minkowski sum + (or, to be exact, the 1-sum +1), is

the only polynomial addition on Kn0 . We can do this under a few weak additional

assumptions:

Theorem 2.3. Fix n ≥ 2. Assume ⊕ : Kn0 × Kn0 → Kn0 is a polynomial addition

operation. Assume further that:

(1) {0} is the identity element of ⊕: A⊕ {0} = {0} ⊕A for every A ∈ Kn0 .

(2) ⊕ is divisible: For every A ∈ Kn0 and every integer m there exists B ∈ Kn0 such

that m�B = A.

(3) If m�A ⊆ m�B for some integer m, then A ⊆ B.

Then either A ⊕ B = A +∞ B (and the polynomial is just constant) or A ⊕ B =

A+1 B.

Theorem 2.3 will be proven in section 5. We will also prove there another char-

acterization theorem for p-sums, which seems to be interesting by its own right.
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Let us conclude this introduction with three remarks concerning Definition 2.1

and our notion of an “addition operation”:

Remark 2.1. Almost all interesting additions on convex bodies are indeed “ad-

dition operations” in the formal sense of Definition 2.1. However, there is at least

one important exception, which is the Blaschke addition. We will not define this

addition here, and instead refer the interested reader to section 8.2.2 of [12]. Since

the Blaschke sum is not monotone, it is formally not an “addition operation”, so

our results will not cover this case.

A characterization of the Blaschke sum was recently obtain by Gardner, Para-

patits and Schuster (see [5]).

Remark 2.2. In the definition of an addition operation we asked for ⊕ to have an

identity element. This is necessary in order to exclude some pathologies, such as

the addition

A⊕B =

{
{0} A = {0} or B = {0}
A+1 B otherwise.

Note, however, that for different additions we may have different identity elements.

For example, if p ≥ 1 then the identity element of +p is {0}, while if p ≤ −1 the

identity element of +p is Rn.

Remark 2.3. In Theorem 2.3 we assume that {0} is the identity element with re-

spect to ⊕. It may be interesting to notice that this algebraic condition is equivalent

to a certain monotonicity condition: {0} is the identity element of ⊕ if and only if

A ⊆ A⊕B for every A,B ∈ Kn0 .

Of course, if we know that our addition satisfies this stronger assumption, then

we may also improve Theorem 2.2:

Corollary 2.1. Let ⊕ : Kn0 × Kn0 → Kn0 be an addition operation such that A ⊆
A ⊕ B for all A,B ∈ Kn0 . Assume there exists a function f : N → R+ such that

n�A = f(n)A for every A ∈ Kn0 and every integer n. Then there exists 0 < p ≤ ∞
such that A⊕B = A+p B for every A,B ∈ Kn0 . If n ≥ 2 then 1 ≤ p <∞.

A similar corollary can be stated for negative values of p, using the “dual”

condition A ⊇ A⊕B.

3. Theorem 2.2 in the case f(2) > 1

In this section we will prove the following case of Theorem 2.2:

Proposition 3.1. Let ⊕ : Kn0 ×Kn0 → Kn0 be an addition operation. Assume there

exists a function f : N → R+ such that m � A = f(m)A for every A ∈ Kn0 and

every integer m. If f(2) > 1, then there exists p > 0 such A⊕B = A+pB for every

A,B ∈ Kn0 . If n ≥ 2 then p ≥ 1.
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We will now prove the theorem, by a sequence of claims:

Claim 3.1. {0} is the identity element with respect to ⊕.

Proof. Denote the identity element by K. If K 6= {0} there exists 0 6= a ∈ K, and

then by convexity [0, a] ⊆ K. But then we get from monotonicity that

[0, a] = [0, a]⊕K ⊇ [0, a]⊕ [0, a] = f(2) [0, a] = [0, f(2) · a] .

Since f(2) > 1, this is obviously a contradiction.

Claim 3.2. There exists q > 0 such that f(m) = mq.

Proof. First, we prove that f is monotone increasing. Fix some compact set {0} 6=
K ∈ Kn0 , and notice that for any n we have

f(m+ 1)K = (m+ 1)�K = (m�K)⊕K ⊇ (m�K)⊕ {0} = m�K = f(m)K.

It follows that indeed f(m+ 1) ≥ f(m).

Next, we prove that f is multiplicative: For all integers m and k we have

f(mk)K = (mk)�K = m� (k �K) = m� (f(k)K) = f(m)f(k)K,

so f(mk) = f(m)f(k).

However, it is known that every increasing and multiplicative function must be

of the form f(m) = mq, so we are done. This follows for example from a more

general theorem of Erdős ([1]), and a short and accessible proof of the exact result

we use appears for example in [6].

From now on we will write p = 1
q . Our goal is to prove that p ≥ 1, and that

A⊕B = A+p B for every A,B ∈ Kn0 .

Let us write

Mp(a, b) = (ap + bp)
1
p

for every 0 < p < ∞ and 0 ≤ a, b ≤ ∞. For every θ ∈ Sn−1 and c ∈ R let us also

define

Hθ,c = {x ∈ Rn : 〈x, θ〉 ≤ c} .

We will simply write Hθ for Hθ,0. Of course, Hθ,∞ is Rn itself.

Claim 3.3. For every θ ∈ Sn−1 and every 0 ≤ c, d ≤ ∞ we have Hθ,c ⊕ Hθ,d =

Hθ,Mp(c,d)
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Proof. First assume that cp = m
k and dp = s

t are positive rationals, then

Hθ,c ⊕Hθ,d =

(
mq

kq
Hθ,1

)
⊕
(
sq

tq
Hθ,1

)
=

[
(mt)�

(
1

kqtq
Hθ,1

)]
⊕
[
(sk)�

(
1

kqtq
Hθ,1

)]
= (mt+ sk)�

(
1

kqtq
Hθ,1

)
=

(
mt+ sk

kt

)q
Hθ,1

=
(m
k

+
s

t

)q
Hθ,1 = (cp + dp)

1
p Hθ,1 = Hθ,Mp(c,d).

Since the rationals are dense in [0,∞], all the remaining cases can be proven by

approximation, using the monotonicity of ⊕.

Claim 3.4. For every A ∈ Kn0 we have A⊕Hθ = Hθ ⊕A = Hθ,hA(θ).

Proof. We will only prove that A ⊕ Hθ = Hθ,hA(θ). The proof that Hθ ⊕ A =

Hθ,hA(θ) is completely analogous.

For one inclusion, notice that A⊕Hθ ⊇ A⊕{0} = A, and similarly A⊕Hθ ⊇ Hθ.

Since A⊕Hθ is convex and closed we must have

A⊕Hθ ⊇ conv {A,Hθ} = Hθ,hA(θ).

Next we prove the opposite inclusion. We know that A ⊆ Hθ,hA(θ), so by mono-

tonicity and claim 3.3 we see that

A⊕Hθ ⊆ Hθ,hA(θ) ⊕Hθ,0 = Hθ,Mp(hA(θ),0) = Hθ,hA(θ)

Claim 3.5. For every A,B ∈ Kn0 we have A⊕B = A+p B.

Proof. Fix θ ∈ Sn−1. Our goal is to prove that hA⊕B (θ) = Mp (hA(θ), hB(θ)).

On the one hand, using the previous claim, we know that

(A⊕B)⊕Hθ = Hθ,hA⊕B(θ).

On the other hand, since Hθ ⊕Hθ = Hθ, we may write

(A⊕B)⊕Hθ = (A⊕B)⊕ (Hθ ⊕Hθ) = A⊕ (B ⊕Hθ)⊕Hθ

= A⊕ (Hθ ⊕B)⊕Hθ = (A⊕Hθ)⊕ (B ⊕Hθ) = Hθ,hA(θ) ⊕Hθ,hB(θ)

= Hθ,Mp(hA(θ),hB(θ))

This implies that indeed hA⊕B (θ) = Mp (hA(θ), hB(θ)), and the proof is

complete.

The only thing that remains to be proven is that indeed p ≥ 1 when the dimen-

sion n is at least 2. This is obvious, as it is well known that the p-sum does not

preserve convexity for 0 < p < 1. For completeness, let us give a short proof for this

simple fact:
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Claim 3.6. If n ≥ 2 then we must have p ≥ 1.

Proof. Choose {e1, e2} ⊆ Rn to be an orthonormal pair. Choose A = [0, e1],

B = [0, e2], and C = A⊕B = A+p B.

A simple calculation gives:

hC(e1) = (hA(e1)p + hB(e1)p)
1
p = 1

hC(e2) = (hA(e2)p + hB(e2)p)
1
p = 1

hC

(
e1 + e2

2

)
=

(
hA

(
e1 + e2

2

)p
+ hB

(
e1 + e2

2

)p) 1
p

= 2
1−p
p .

Since hC is a convex function we see that

2
1−p
p = hC

(
e1 + e2

2

)
≤ hC(e1) + hC(e2)

2
= 1,

which implies that p ≥ 1.

4. The remaining cases of Theorem 2.2

Using Proposition 3.1 and duality, we can also understand the situation f(2) < 1.

Proposition 4.1. Let ⊕ : Kn0 × Kn0 → Kn0 be an addition. Assume there exists a

function f : N→ R+ such that m�A = f(m)A for every A ∈ Kn0 and every integer

m. If f(2) < 1, then there exists p > 0 such A⊕B = A+−pB for every A,B ∈ Kn0 .

If n ≥ 2 then p ≥ 1.

Proof. Define a new addition � on Kn0 by

A�B = (A◦ ⊕B◦)◦ .

It is easy to check that if ⊕ is an addition operation with identity K, then � is also

an addition with identity K◦.

Notice that for every A ∈ Kn0 and integer m we have

m�A = (m�A◦)◦ = (f(m)A◦)
◦

=
1

f(m)
A◦◦ =

1

f(m)
A.

Since 1
f(2) > 1, we may apply Proposition 3.1 and deduce that we have p > 0 (or

p ≥ 1 when n ≥ 2) such that A�B = A+p B for all A,B ∈ Kn0 . But then

A⊕B = (A◦ �B◦)
◦

= (A◦ +p B
◦)
◦

= A+−p B,

which completes the proof.

Finally we must deal with the case f(2) = 1:

Proposition 4.2. Let ⊕ : Kn0 ×Kn0 → Kn0 be an addition. Assume that A⊕A = A

for every A ∈ Kn0 .
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(1) If the identity element of ⊕ is {0}, then A⊕B = A+∞B for every A,B ∈ Kn0 .

(2) If the identity element is Rn then A⊕B = A+(−∞) B.

Proof. Assume first that {0} is the identity element with respect to ⊕.

Then for every A,B ∈ Kn0 we know that

A⊕B ⊇ A⊕ {0} = A

A⊕B ⊇ {0} ⊕B = B,

and since A⊕B is closed and convex we must have A⊕B ⊇ A+∞B. On the other

hand

A⊕B ⊆ (A+∞ B)⊕ (A+∞ B) = A+∞ B,

so the proof is complete.

The case that Rn is the identity element is handled in the same way.

Finally, let us give the promised example for symmetric bodies in dimension 1:

Example 4.1. Define ⊕ : K1
s ×K1

s → K1
s by

[−a, a]⊕ [−b, b] =

{
[−min {a, b} ,min {a, b}] a ≤ 1 and b ≤ 1

[−max {a, b} ,max {a, b}] otherwise.

It is obvious that ⊕ is monotone. It is also straightforward, though a bit tedious,

to check that ⊕ is associative.

The identity element of ⊕ is of course [−1, 1], which is neither {0} nor R.

This completes the proof of Theorem 2.2.

5. Characterizing the addition by Minkowski’s theorem

Our main goal in this section is to prove Theorem 2.3. We start with a slightly

different characterization theorem, that seems to be interesting by its own right:

Theorem 5.1. Fix n ≥ 2. Assume ⊕ : Kn0 × Kn0 → Kn0 is an addition operation.

Assume further that:

(1) {0} is the identity element of ⊕: A⊕ {0} = {0} ⊕A for every A ∈ Kn0 .

(2) ⊕ is divisible: For every A ∈ Kn0 and every integer m there exists B ∈ Kn0 such

that m�B = A.

(3) If m�A ⊆ m�B for some integer m, then A ⊆ B.

(4) For every subspace V of Rn we have V ⊕ V = V .

Then there exists 1 ≤ p ≤ ∞ such that A⊕B = A+p B for all A,B ∈ Kn0 .

In the proof of Theorem 5.1 we will reuse some of the claims we had in Section

3. However, we will also need two new claims:
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Claim 5.1. For every A,B ∈ Kn0 and every integer m we have m � (A ∩B) =

(m�A) ∩ (m�B).

Proof. One inclusion is immediate from monotonicity: A ∩ B ⊆ A implies m �
(A ∩B) ⊆ m�A. Similarly m� (A ∩B) ⊆ m�B, so we see that indeed

m� (A ∩B) ⊆ (m�A) ∩ (m�B) .

For the second inclusion, by condition 2 there exists C ∈ Kn0 such that

m� C = (m�A) ∩ (m�B) .

Since m � C ⊆ m � A, condition 3 implies that C ⊆ A. Similarly C ⊆ B, and

then C ⊆ A ∩B so

(m�A) ∩ (m�B) = m� C ⊆ m� (A ∩B).

This completes the proof.

Claim 5.2. For every m ∈ N there exists a number f(m) ≥ 1 such that

m�Hθ,c = f(m)Hθ,c = Hθ,f(m)c

for all θ ∈ Sn−1 and c > 0.

Proof. Note that by monotonicity and condition 1 we have

m�Hθ,c ⊇ [(m− 1)� {0}]⊕Hθ,c = Hθ,c,

So m�Hθ,c = Hθ,λc for some λ ≥ 1. Our goal is to prove that λ is independent of

θ and c.

So, assume that m�Hθ,c = Hθ,λc and m�Hη,d = Hη,µd. Our goal is to prove

that λ = µ, and we may assume that θ 6= η. This means that we can find a point

x0 ∈ Rn such that 〈x0, θ〉 = c and 〈x0, η〉 = d. If we define A = (−∞, x0] to be the

ray emanating from x0 and passing through the origin, then

A = Hθ,c ∩ Rx0 = Hη,d ∩ Rx0.

Now we apply the previous claim to Hθ,c and Rx0 and see that

m�A = m� (Hθ,c ∩ Rx0) = (m�Hθ,c) ∩ (m� Rx0) = Hθ,λc ∩Rx0 = (−∞, λx0].

Of course, we used condition 4 to deduce that m� Rx0 = Rx0.

But exactly the same reasoning shows us that

m�A = m� (Hη,d ∩ Rx0) = (m�Hη,d)∩ (m� Rx0) = Hη,µd ∩Rx0 = (−∞, µx0]

This shows that λ = µ as we wanted.

Once we have the above claims, the proof of Theorem 5.1 is almost immediate:

Proof. We know that there exists f : N→ [1,∞) such that m�Hθ,c = f(m)Hθ,c

for all half spaces Hθ,c. If f(2) > 1, then the proof of Claim 3.2 shows that f(m) =
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m
1
p for some 0 < p < ∞. The rest of the proof proceeds exactly like the proof of

Proposition 3.1.

If f(2) = 1, then H ⊕H = H for every half space H. Let us show that the same

is true for every A ∈ Kn0 : On the one hand

A⊕A ⊇ A⊕ {0} = A.

On the other hand for every H which supports A we have

A⊕A ⊆ H ⊕H = H.

Since every closed convex set is uniquely defined by its supporting hyperplanes, we

see that A⊕A ⊆ A.

Since A ⊕ A = A for all A ∈ Kn0 , we may apply Proposition 4.2 and conclude

that ⊕ = +∞.

Now we are ready to prove Theorem 2.3. We want to use Theorem 5.1 in the

proof. However, in the statement of Theorem 2.3 we did not assume condition 4 of

Theorem 5.1, so we have to prove it:

Lemma 5.1. Under the assumptions of theorem 2.3, we must have V ⊕V = V for

every subspace V of Rn.

Proof. Let V be any fixed subspace of Rn. We always have V ⊕V ⊇ V ⊕{0} = V .

For the other inclusion assume by contradiction that a ∈ V ⊕ V but a /∈ V , we

first assume that dimV = n− 1. Notice that in this case

V ⊕ V ⊇ conv {V, a},

which is a set of infinite volume. However, by polynomiality

|s� V | = |(s� V )⊕ (1� {0})| =
d∑

i,j=0

cijs
i1j =

d∑
i=0

c̃is
i.

Plugging in s = 2 we see that

d∑
i=0

(
c̃i · 2i

)
= |V ⊕ V | =∞,

so c̃i =∞ for some i. But then we will also have

|V | = |1� V | =
d∑
i=0

c̃i =∞.

This is a contradiction, since a proper subspace always satisfy |V | = 0.

Now we assume that dimV = m < n−1. We may choose our coordinate system

in such a way that

V = {(x1, x2, . . . , xn) : xm+1 = xm+2 = · · · = xn = 0} .
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and a = em+1 = (0, 0, . . . , 0, 1, 0, . . . , 0). Since a ∈ V ⊕ V we must have

V ⊕ V ⊇ conv {V, a} =

{
(x1, x2, . . . , xn) :

0 ≤ xm+1 ≤ 1

xm+2 = xm+3 = · · · = xn = 0

}
.

Now let us define

W = {(x1, x2, . . . , xn) : x1 = x2 = · · · = xm+1 = 0} .

Notice that

V ⊕W ⊆ 2� {(x1, x2, . . . , xn) : xm+1 = 0} = {(x1, x2, . . . , xn) : xm+1 = 0} ,

so |V ⊕W | = 0. However,

V ⊕ V ⊕W ⊇ conv {V, a,W} = {(x1, x2, . . . , xn) : 0 ≤ xm+1 ≤ 1} ,

so |2� V ⊕W | = ∞. This will give contradiction to the polynomiality of

|(s� V )⊕ (t�W )|, just like the previous case.

Now we can prove Theorem 2.3:

Proof. By the lemma, ⊕ satisfies all conditions of Theorem 5.1, so ⊕ = +p for

some 1 ≤ p ≤ ∞. We only have to check that for 1 < p < ∞ there will be no

polynomiality. This is just a computation, which is similar (though not identical)

to the one in [4]. Indeed, define q ∈ (1,∞) by 1
q + 1

p = 1 and define

K =
{
x ∈ Rn : ‖x‖q ≤ 1

}
.

Remember that hK(θ) = ‖θ‖p.
Let us choose as our convex bodies A = T (K) and B = S(K), where

T, S ∈ GL(n) are positive diagonal matrices: T = diag(t1, t2, . . . , tn) and S =

diag(s1, s2, . . . , sn) for si, ti > 0.

We want to understand what is the body C = (m�A) ⊕ (k �B). For every

θ = (θ1, . . . , θn) we have

hC(θ) = (m · hA(θ)p + k · hB(θ)p)
1
p = (m · hK (T ∗θ)

p
+ k · hK (S∗θ)

p
)

1
p

=
(
m ‖Tθ‖pp + k ‖Sθ‖pp

) 1
p

=
∥∥∥(mT p + kSp)

1
p θ
∥∥∥
p
,

so

(m�A)⊕ (k �B) = (mT p + kSp)
1
p K.

It follows that

|(m�A)⊕ (k �B)| = |K| · det (mT p + kSp)
1
p ,

so det (mT p + kSp)
1
p must be a polynomial in m and k for every choice of diagonal

matrices T and S.
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From here it is simple to obtain a contradiction: by taking T = S = Id we get

that

det (mI + kI)
1
p = (m+ k)

n
p

is a polynomial in m and k. By taking T = diag(2
1
p , 1, 1, . . . , 1) and S = Id we get

that

det(mT p+kI)
1
p = det

(
diag(2m+ k,m+ k, . . . ,m+ k)

1
p

)
= (2m+k)

1
p (m+ k)

n−1
p

is also a polynomial. Hence their quotient

(m+ k)
n
p

(2m+ k)
1
p (m+ k)

n−1
p

=

(
m+ k

2m+ k

) 1
p

is a rational function. This is impossible, since 0 < 1
p < 1.

Let us conclude this section by mentioning a possible alternative formulations

for Theorems 2.3 and 5.1:

(1) As already mentioned in Remark 2.3, condition 1 is equivalent to the statement

that ⊕ has some identity element K, and that A ⊆ A⊕B for all A,B ∈ Kn0 .

(2) Notice that in the proof of Theorem 5.1 we only used conditions 2 and 3 in

the proof of Claim 5.1. Hence we may replace these assumptions by the single

assumption that

m� (A ∩B) = (m�A) ∩ (m�B)

for every A,B ∈ Kn0 and every integer m.

(3) It is possible to replace condition 2 by the requirement ⊕ is continuous in the

Hausdorff sense. To do this one disposes of Claim 5.1, and proves Claim 5.2

directly using a slightly different argument. We will not give all the details

here.

6. Dealing with compact sets

So far we have stated and proved all our theorems for the class Kn0 , which also

contains non-compact sets. These non-compact sets, such as half spaces, were heav-

ily used in many of the proofs. However, it is sometimes more natural to consider

instead the class Kn0,c, which is the class of all compact bodies inside Kn0 . In this

final section we will explain how our results can be proved for this class as well.

The main idea is that under a weak regularity condition, additions on Kn0,c
may be extended to additions on Kn0 with the same properties. We say that ⊕ is

an addition on Kn0,c if it satisfies the obvious analog of Definition 2.1. The exact

condition we will impose on ⊕ is the following:

Definition 6.1. Fix a family of sets {Am}∞m=1 ⊆ Kn0,c and set A ∈ Kn0,c. We write

Am ↗ A if

A1 ⊆ A2 ⊆ A3 ⊆ · · ·
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and

A =

∞⋃
m=1

Am.

Definition 6.2. Let⊕ : Kn0,c×Kn0,c → Kn0,c be any map. We say that⊕ is continuous

from below if whenever we have Am ↗ A and Bm ↗ B we also have (Am ⊕Bm)↗
(A⊕B).

We want to show that every addition operation ⊕ on Kn0,c which is continuous

from below may be extended to an addition on Kn0 . For the construction we will

need the following piece of notation: given A ∈ Kn0 , we say that P � A if:

(1) P is a polytope.

(2) P is contained in the relative interior of A (i.e. the interior of A with respect

to its affine hull).

(3) 0 ∈ P .

Given ⊕ : Kn0,c ×Kn0,c → Kn0,c, we define an operation � : Kn0 ×Kn0 → Kn0 by

A�B =
⋃
{P ⊕Q : P � A, Q � B}.

The first result about � is the following:

Proposition 6.1. Assume ⊕ is an addition operation on Kn0,c which is continuous.

Then � is an addition operation on Kn0 which extends ⊕.

Proof. First we show that A � B is indeed a convex set, so � is well defined. Of

course, it is enough to prove that

C =
⋃
{P ⊕Q : P � A, Q � B}

is convex (without the closure). Fix x, y ∈ C. Then x ∈ P1 ⊕Q1 and y ∈ P2 ⊕Q2

for some Pi � A and Qi � B. If we now define

P = P1 +∞ P2, Q = Q1 +∞ Q2,

then P � A, Q � B and by monotonicity x, y ∈ P ⊕Q. Since P ⊕Q is convex we

see that [x, y] ⊆ P ⊕Q ⊆ C, so C is indeed convex.

Next we show that � is an extension of ⊕, i.e. A � B = A ⊕ B for every

A,B ∈ Kn0,c. The inclusion (⊆) follows from the monotonicity of ⊕. For the opposite

inclusion, just choose sequences {Pm} , {Qm} such that Pm � A, Qm � B, and

Pm ↗ A, Qm ↗ B. From the definition we will have A� B ⊇ Pm ⊕Qm for all n,

and since (Pm ⊕Qm)↗ (A⊕B), the claim follows.

Next, we need to prove that � is an addition operation. Monotonicity is clear

from the definition. Assume K ∈ Kn0,c is the identity element of ⊕. Then for every

P � A and Q � K we have

P ⊕Q ⊆ P ⊕K = P ⊆ A,
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so A � K ⊆ A. For the opposite direction we again take sequences {Pm} , {Qm}
such that Pm � A, Qm � K, and Pm ↗ A, Qm ↗ K. For every integers m

and k we have A � K ⊇ Pm ⊕ Qk. Fixing m and sending k → ∞, we know that

(Pm ⊕Qk) ↗ (Pm ⊕K) = Pm, so A �K ⊇ Pm. Since this was true for all m we

have A�K ⊇ A.

Finally, we need to prove that � is associative. In fact, we will prove that

(A�B) � C =
⋃
{(P ⊕Q)⊕R : P � A, Q � B, R � C}. (6.1)

This, and the analog equality for A� (B � C), will prove the result we want.

The inclusion (⊇) is easy, since we have already seen that � is monotone and

extends ⊕. Hence for every P � A, Q � B and R � C we have

(P ⊕Q)⊕R = (P �Q) �R ⊆ (A�B) � C,

and the inclusion follows.

For the opposite inclusion, fix S � A�B and R � C. Since S is a polytope, we

may write S = conv {x1, x2, . . . , xm}, and every xi is in the interior of A � B. By

definition, this means that xi ∈ Pi ⊕Qi for some Pi � A and Qi � B. Taking

P = P1 +∞ P2 +∞ · · ·+∞ Pm

Q = Q1 +∞ Q2 +∞ · · ·+∞ Qm,

we see that P � A, Q � B, and S ⊆ P ⊕Q. Hence we have

S ⊕R ⊆ (P ⊕Q)⊕R,

so the other inclusion follows and our proof is complete.

The use of polytopes in the definition of � made the proof of associativity

simpler. It is easy to check that in fact we also have

A�B =
⋃{

K ⊕ T : K,T ∈ Kn0,c, K ⊆ A, T ⊆ B
}
,

but we will not need this fact.

In order to have an analog of Theorem 2.2, we need to relate the homotheties

of � to the homotheties of ⊕:

Proposition 6.2. For every A ∈ Kn0 and m ∈ N we have

m�A =
⋃
{m� P : P � A}.

Proof. Extending equation (6.1) in the obvious way to sums of m sets we give

m�A =
⋃
{P1 ⊕ P2 ⊕ · · · ⊕ Pm : P1, P2, . . . , Pm � A}.

From here the inclusion (⊇) is obvious. For the opposite inclusion, just define

P = P1 +∞ P2 +∞ · · ·+∞ Pm
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and notice that by monotonicity P1 ⊕ P2 ⊕ · · · ⊕ Pm ⊆ m� P .

We are now ready to prove the first main theorem of this section:

Theorem 6.1. Let ⊕ : Kn0,c × Kn0,c → Kn0,c be an addition operation which is

continuous from below. Assume there exists a function f : N → R+ such that

m�A = f(m)A for every A ∈ Kn0,c and every integer m. Then:

(1) If f is not the constant function 1, then there exists p > 0 such that A ⊕ B =

A+p B for every A,B ∈ Kn0,c. If n ≥ 2 then 1 ≤ p <∞.

(2) If f ≡ 1 and the identity element of ⊕ is {0}, then A⊕B = A+∞ B for every

A,B ∈ Kn0 .

Notice that p-sums for p < 0 are automatically excluded, since their identity

element, Rn, is not a compact set.

Proof. The extension � satisfies

m�A =
⋃
{m� P : P � A} =

⋃
{f(m)P : P � A}

= f(m)
⋃
{P : P � A} = f(m)A.

To conclude, apply Theorem 2.2 to �.

The extensions of Theorems 2.3 and 5.1 proceed in the same way. All we have

to do is check that if ⊕ satisfies the conditions of these theorems, so does �. For

example:

Proposition 6.3. Assume ⊕ : Kn0,c × Kn0,c → Kn0,c is an addition operation which

is continuous from below and satisfies:

(1) ⊕ is divisible: For every A ∈ Kn0,c and every integer m there exists B ∈ Kn0,c
such that m�B = A.

(2) If m�A ⊆ m�B for some integer m, then A ⊆ B.

Then � : Kn0 ×Kn0 → Kn0 satisfies the same two properties.

Proof. Notice that these two properties together imply for every A ∈ Kn0,c there

exists a unique B ∈ Kn0,c such that m� B = A. Let us write B = 1
m � A. We now

define

1

m
�A =

⋃{
1

m
� P : P � A

}
(6.2)

and claim that m�
(

1
m �A

)
= A for all A ∈ Kn0 . By Proposition 6.2 we have

m�

(
1

m
�A

)
=
⋃{

m�Q : Q �
(

1

m
�A

)}
.
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For every P � A we have by definition 1
m � P ⊆

1
m �A, so

P = m�
(

1

m
� P

)
⊆ m�

(
1

m
�A

)
.

This shows that indeed A ⊆ m�
(

1
m �A

)
.

For other inclusion, take Q � 1
m � A. Since Q is a polytope we can write

Q = conv {x1, x2, . . . , xk}, and for every 1 ≤ i ≤ k we have xi ∈ 1
m � Pi for some

Pi � A. Taking

P = P1 +∞ P2 +∞ · · ·+∞ Pk,

and using the monotonicity condition (2), we see that Q ⊆ 1
m � P . Hence

m�Q ⊆ m�
(

1

m
� P

)
= P ⊆ A,

and we see that indeed m �
(

1
m �A

)
⊆ A. This proves that � satisfies condition

(1).

The fact that � satisfies condition (2) is obvious from the explicit formula (6.2).

This proposition, in turn, immediately implies:

Theorem 6.2. Fix n ≥ 2. Assume ⊕ : Kn0,c×Kn0,c → Kn0,c is an addition operation

which is continuous from below. Assume further that:

(1) {0} is the identity element of ⊕: A⊕ {0} = {0} ⊕A for every A ∈ Kn0,c.
(2) ⊕ is divisible: For every A ∈ Kn0,c and every integer m there exists B ∈ Kn0,c

such that m�B = A.

(3) If m�A ⊆ m�B for some integer m, then A ⊆ B.

(4) For every subspace V of Rn and every A,B ∈ Kn0,c which satisfy A,B ⊆ V we

also have A⊕B ⊆ V .

Then there exists 1 ≤ p ≤ ∞ such that A⊕B = A+p B for all A,B ∈ Kn0,c.

Proof. Using the previous proposition, we see that � satisfies all conditions of

Theorem 5.1.

Finally, we want to have an variant of Theorem 2.3 about polynomiality of

volume. We say that ⊕ : Kn0,c ×Kn0,c → Kn0,c is polynomial if it satisfies the obvious

analog of Definition 2.6. Since our sets are now compact they all have finite volume,

so the coefficients cij of the polynomial are automatically finite as well. We can now

state:

Theorem 6.3. Fix n ≥ 2. Assume ⊕ : Kn0,c×Kn0,c → Kn0,c is a polynomial addition

operation which is continuous from below. Assume further that:

(1) {0} is the identity element of ⊕: A⊕ {0} = {0} ⊕A for every A ∈ Kn0 .
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(2) ⊕ is divisible: For every A ∈ Kn0 and every integer m there exists B ∈ Kn0 such

that m�B = A.

(3) If m�A ⊆ m�B for some integer m, then A ⊆ B.

Then either A ⊕ B = A +∞ B (and the polynomial is just constant) or A ⊕ B =

A+1 B.

For the proof, note that there is no need to show that the extension � is also

polynomial, since the proof of Theorem 2.3 only used polynomiality for compact

sets anyway. However, we do need to extend Lemma 5.1 to our case:

Lemma 6.1. Assume ⊕ satisfies all the assumptions of Theorem 6.3. Then for

every subspace V of Rn and every A,B ∈ Kn0,c which satisfy A,B ⊆ V we also have

A⊕B ⊆ V .

Proof. The proof is similar to the proof of Lemma 5.1, so we will omit some of the

details. By monotonicity, we may assume without loss of generality that

A = B = {x ∈ V : |x| ≤ R}

for some R > 0. If, by contradiction, A⊕A 6⊆ V then there exists a ∈ (A⊕A) \ V .

First, assume that dimV = n− 1. For every s ∈ N we may write

|s�A| = |(s�A)⊕ (1� {0})| =
d∑

i,j=0

cijs
i1j = f(s),

for some polynomial f . Of course, since f is a polynomial, it is defined for every

x ∈ R, not only for natural numbers.

Fix m ∈ N. By divisibility there exists C ∈ Kn0,c such that m � C = A. By

polynomiality of volume there exists a polynomial g(x) such that g(s) = |s� C| for

every s ∈ N. In particular we have for every s ∈ N

f(s) = |s�A| = |s� (m� C)| = |(sm)� C| = g(ms).

We see that the polynomials f(x) and g(mx) coincide on N, so we must have

f(x) = g(mx) for all x ∈ R. Since C ⊆ A ⊆ V we have |C| = 0, so

f

(
1

m

)
= g(1) = |C| = 0.

Since f
(

1
m

)
= 0 for every m ∈ N, f must be the zero polynomial, and then |s�A| =

0 for all s ∈ N.

However, A⊕A ⊇ conv {A, a}, which is a set of positive volume. Hence |2�A| >
0, we we arrived at a contradiction.

Now we assume dimV = m < n−1. By choosing our coordinate system correctly,

it is enough to consider the case

V = {(x1, x2, . . . , xn) : xm+1 = xm+2 = · · · = xn = 0}
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and a = em+1 (and A, like before, is {x ∈ V : |x| ≤ R} for some R). If we now

define

C =

{
x = (x1, x2, . . . , xn) :

x1 = x2 = · · · = xm+1 = 0

|x| ≤ 1

}
,

then A⊕C is of zero volume, while A⊕A⊕C is of non-zero volume. This will give

the same contradiction as before, for the polynomial f(s) = |(s�A)⊕ C|.

After we have the lemma, we can deduce Theorem 6.3 from Theorem 6.2, in

exactly the same way that Theorem 2.3 was deduced from Theorem 5.1. No other

changes in the proof are necessary.
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